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Drug-induced liver injury (DILI) is the most common adverse

event causing drug nonapprovals and drug withdrawals. Using

drugs as test agents and measuring a panel of cellular phenotypes

that are directly linked to key mechanisms of hepatotoxicity, we

have developed an in vitro testing strategy that is predictive of

many clinical outcomes of DILI. Mitochondrial damage, oxidative

stress, and intracellular glutathione, all measured by high content

cellular imaging in primary human hepatocyte cultures, are the

three most important features contributing to the hepatotoxicity

prediction. When applied to over 300 drugs and chemicals

including many that caused rare and idiosyncratic liver toxicity

in humans, our testing strategy has a true-positive rate of 50–60%

and an exceptionally low false-positive rate of 0–5%. These

in vitro predictions can augment the performance of the combined

traditional preclinical animal tests by identifying idiosyncratic

human hepatotoxicants such as nimesulide, telithromycin, nefa-

zodone, troglitazone, tetracycline, sulindac, zileuton, labetalol,

diclofenac, chlorzoxazone, dantrolene, and many others. Our

findings provide insight to key DILI mechanisms, and suggest

a new approach in hepatotoxicity testing of pharmaceuticals.

Key Words: liver injury; idiosyncratic hepatotoxicity; hepatitis;

mechanism of organ toxicity; in vitro in vivo correlations;

pharmacokinetic scaling; hepatotoxicity testing.

Advances in modern drug therapy have saved and improved

many human lives. However, adverse drug reactions represent

a major challenge for healthcare professionals, drug regulators,

and pharmaceutical companies. Drug-induced liver injury

(DILI), in particular, is an alarming public health problem. It

is the leading cause in acute liver failures that necessitate organ

transplants, safety recalls from the world-wide pharmaceutical

market, nonapprovable decisions regarding new drug applica-

tions (NDAs), and internal drug development failures among

all major pharmaceutical companies (Giacomini et al., 2007;

Holt and Ju, 2006; Kaplowitz, 2005; Lee, 2003; Navarro and

Senior, 2006; Schuster et al., 2005; Senior, 2007; Zimmerman,

2000). If predictive cellular systems can be developed and

applied to identify a significant number of hepatotoxic drugs

with a high degree of specificity, it would undoubtedly improve

the safety profile of new therapies and impact the well being of

both humans (minimize unsafe drug exposure to patients) and

animals (support the replacement, refinement and reduction of

animal usage). Recently, well-defined and characterized

primary cultures of human hepatocytes were developed and

demonstrated to maintain the differentiated functions of liver

metabolism and transport (Bi et al., 2006; Davila et al., 2007;

Gross-Steinmeyer et al., 2005; Hewitt et al., 2007; Hoffmaster

et al., 2004; LeCluyse et al., 2005; Page et al., 2007). We

report here that by applying this primary cell culture system

and measuring a panel of signals directly linked to key

mechanisms of liver injury (Holt and Ju, 2006; Lee, 2003;

Xu et al., 2004) using high content imaging approaches, we

can make significant improvements over existing capabilities

for predicting drugs that can cause liver injury including

idiosyncratic hepatotoxicity.

MATERIALS AND METHODS

Materials. Most of the drugs and chemicals were purchased from Sigma

Chemicals (St Louis, MO) or Sequoia Research Products (Pangbourne, UK). In

a small number of cases where such chemicals were not commercially

available, they were obtained from the Pfizer chemical sample bank (Groton,

CT). Human hepatocytes were obtained from CellzDirect (Durham, NC), as

well as human hepatocyte media and media supplements. BD BioCoat plates

and Matrigel were purchased from BD BioSciences (Billerica, MA). All

fluorescent probes were purchased from Molecular Probes (Eugene, OR),

except for 1,5-bis{[2-(di-methylamino) ethyl]amino}-4,8-dihydroxyanthracene-

9,10-dione (DRAQ5), which was from Biostatus (Shapshed, UK).

Drug classifications and pharmacokinetic database. Drug classification

based on clinical data of hepatotoxicity (Kaplowitz, 2005; Lee, 2003; Stricker,

1992; Zimmerman, 1999) was verified by an automated PubMed search tool

commercially available from QUOSA (Brighton, MA). QUOSA enables

automated full-text searches of any number of drugs AND any number of

classical terminologies for liver injury (i.e., liver injury, hepatotoxicity,

hepatitis, hepatic damage, and variations thereof), within PubMed. The search

was conducted in November, 2005. Therapeutic exposure levels were obtained

from a combination of literature search and commercially available databases

(PubMed, Physicians’ Desk Reference, Prous, and Pharmapendium). The

therapeutically active average plasma maximum concentration (Cmax) values

upon single-dose administration at commonly recommended therapeutic doses
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were collated. In cases where multiple recommended doses are available, the

average total Cmax corresponding to a single administration at the median dose

was used. In a small fraction of cases where human therapeutic Cmax values

were not available (e.g., the development of a drug candidate was stopped

before any human Cmax value could be obtained), the human total Cmax was

assumed to be 1lM.

Human hepatocyte imaging assay technology. Freshly isolated or

cryopreserved (but long-term culturable) human hepatocytes were obtained

commercially from CellzDirect (Durham, NC). For image assays, the

hepatocytes used need to be ‘‘imaging-quality’’—that is, confluent monolayer

cultures without excessive intracellular lipid vacuoles. About 60,000 viable

hepatocytes were plated on collagen I-coated BD BioCoat 96-well plates in

hepatocyte plating medium (Dulbecco’s Minimal Essential Medium, 5% fetal

bovine serum, 50 unit/ml penicillin, 50 lg/ml streptomycin, 4 lg/ml bovine

insulin, 4mM L-glutamine, 1lM trichostatin A, and 1lM dexamethasone).

After 3 h, the nonattached cells were shaken and aspirated off the plate, and the

medium was changed to hepatocyte culturing medium without phenol red

(Williams E medium supplemented with 6.25 lg/ml insulin, 6.25 lg/ml

transferrin, 6.25 ng/ml selenious acid, 1.25 mg/ml bovine serum albumin, 5.35

lg/ml linoleic acid, 15mM of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic

acid, 50 unit/ml penicillin, 50 lg/ml streptomycin, 4mM L-glutamine, 1lM

trichostatin A, and 0.1lM dexamethasone). On the second day, the Matrigel

overlay was applied by changing the medium to ice-chilled hepatocyte

culturing medium containing ice-cold Matrigel at a final concentration of

0.25 mg/ml. On the third day, the cells were treated by a compound of interest

or vehicle (0.1% dimethyl sulfoxide [DMSO]). All compounds were initially

solubilized in 100% DMSO. They were diluted in the same hepatocyte

culturing medium as above, but with phenol red and 5% fetal bovine serum, to

a final DMSO concentration of 0.l%. The inclusion of phenol red in this step

was to allow a facile way to identify and exclude a small number of compounds

that might alter the pH of the buffered medium. The inclusion of 5% serum was

to facilitate both drug solubility and correlation with total therapeutic Cmax

in vivo (vide infra). After 24 h of incubation (37�C, 5% CO2, 100% humidity),

the medium was removed and the cells were stained by fluorescent probes in

the same hepatocyte culturing medium without serum or phenol red. The

fluorescent probes used were tetramethyl rhodamine methyl ester (TMRM)

(0.02lM, 1 h), DRAQ5 (45lM, 30 min), 5-(and-6)-chloromethyl-2#7#-dichloro-

dihydrofluorescein diacetate acetyl ester (CM-H2DCFDA) (10lM, 30 min), and

finally monochlorobimane (mBCl) (80lM, 5 min). The TMRM, DRAQ5, and

CM-H2DCFDA were incubated together with the cells for the first 30 min,

followed by TMRM alone for 25 min in the cell culture incubator, then finally

TMRM with mBCl for 5 min in the environmental chamber of the Kinetic Scan

Reader. Automated live-cell multispectral image acquisition was performed on

the same Kinetic Scan Reader using a 320 objective (Cellomics, Pittsburgh,

PA). The mBCl probe was prewarmed to 37�C and added live on the deck of

the instrument. The fluorescence images were captured according to the optimal

excitation and emission wavelengths of each probe using an XF93 filter

(Omega Optical, Brattleboro, VT):

� 655 ± 15 and 730 ± 25 nm for DRAQ5 (channel 1—nuclei/lipids),

exposure time 0.7 s.

� 475 ± 20 and 515 ± 10 nm for CM-H2DCFDA (channel 2—reactive

oxygen species [ROS]), exposure time 0.3 s.

� 549 ± 4 and 600 ± 12.5 nm for TMRM (channel 3—mitochondrial

membrane potential [MMP]), exposure time 0.05 s.

� 365 ± 25 and 515 ± 10 nm for mBCl (channel 4—glutathione [GSH]),

exposure time 0.4 s.

To capture enough cells (> 500) for analysis, six image fields starting at the

center of a well were collected from each well. Image analysis was performed

using the ImagePro Plus software (Media Cybernetics, Bethesda, MD). A series

of measurements from the nuclei and lipids, ROS, TMRM, and GSH channel

images were obtained for each drug. They were: nuclei count, nuclei area, lipid

intensity, ROS intensity, TMRM intensity, GSH content, GSH area, and GSH

average pixel intensity. The sum of these numerical measurements from the six

image fields within the same well were divided by the sum of nuclei count from

the same six image fields to obtain values that were standardized by cell

number. The values from the same treatment (e.g., duplicate wells) were

averaged and then normalized by the average values from 16 vehicle-treated

wells. Hence, all the vehicle-treated wells in a 96-well plate will have an

average value of 1 in all imaging outputs and each drug-treated response in

values relative to 1.

Statistical analysis. Statistical analysis of the predictivity of the human

hepatocyte imaging assay technology (HIAT) was conducted using receiver-

operating characteristic (ROC) curves, Boolean logic, and random forest

analysis.

The ROC curve was generated by computing the paired true- and false-

positive rates for all possible thresholds for each imaging profile value (Lasko

et al., 2005). The best predictions occur toward the top-left corner indicative of

high true-positive and low false-positive rates. This approach generated

a threshold where the false-positive rate is zero and the true-positive rate is

a fraction between 0 and 1 for each imaging measurement. This threshold was

then applied to each imaging measurement to score that measurement either as

positive or negative. To increase the overall assay sensitivity, these binary

scores were combined using Boolean logic OR (Duda et al., 2000), to obtain

‘‘Human Hepatocyte (HH) Imaging Final Score.’’ This procedure assigned

a DILI positive label to a compound if any single imaging measurement

produced a positive score by the single assay threshold mentioned above.

Standard random forest machine learning algorithm was applied as

described (Breiman, 2001). A total of 2500 decision trees were trained based

on the imaging profile data. The trees were each trained on 63.2% of the data

with the remainder used for testing (Breiman, 2001). Each compound was then

scored by fraction of positive predictions it received from the trees on which it

had not been trained to form an out-of-bag prediction score. The score obtained

for each compound was then used to produce an ROC curve using all possible

thresholds as described above.

RESULTS

Drug Classifications and Pharmacokinetic Database

We first developed a database of more than 300 drugs and

chemicals with a classification scheme based on clinical data of

hepatotoxicity. Our DILI positive drugs include those (1)

withdrawn from the market mainly due to hepatotoxicity (e.g.,

troglitazone), (2) not marketed in the United States due to

hepatotoxicity (e.g., nimesulide), (3) received black box

warnings from the Food and Drug Administration (FDA) due

to hepatotoxicity (e.g., dantrolene), (4) marketed with hepato-

toxicity warnings in their labels (e.g., telithromycin), (5) others

that had well-known associations to liver injury and had

a significant number (> 10) of independent clinical reports of

serious hepatotoxicity that meet the criteria of Hy’s Law

(Temple, 2006) (e.g., sulindac, diclofenac), and (6) a small

number of Pfizer internal drug candidates whose development

were ceased mainly due to hepatotoxicity concerns (largely as

the result of preclinical animal toxicology data). This small

number of internal drug candidates did not reach the NDA

stage; hence, their identities were codified by compound

numbers. Drugs that do not meet any of the above positive

criteria are classified as DILI negatives. Since every drug can

exhibit some toxicity at high enough exposure (i.e., the notion

of ‘‘dose makes a poison’’ by Paracelsus; Guggenheim, 1993),
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we searched therapeutic exposure levels in the literature and

collated the therapeutically active average plasma maximum

concentration (Cmax) values upon single-dose administration

at commonly recommended therapeutic doses. Our entire DILI

drug database, including DILI classifications, Cmax values,

and Cmax references, can be found in Supplementary Table 1

on line.

Human Hepatocyte Imaging Assay Technology

To measure a panel of signals that are directly linked to key

mechanisms of liver injury simultaneously, we applied

multispectral live-cell imaging of human hepatocytes upon

drug treatment by costaining with multiple fluorescent probes.

By examining these high content imaging outputs, useful

mechanistic information can be extracted (Fig. 1). Our findings

are in accordance with the known mechanisms of DILI by these

drugs: perhexiline can cause nonalcoholic steatohepatitis by

a combination of mitochondrial dysfunction and lipid accu-

mulation (Fig. 1e) (Berson et al., 1998); and oxidative stress

has been implicated in nimesulide-induced liver injury

(Fig. 1b) (Boelsterli, 2002). Our findings also suggest novel

mechanisms previously undocumented in the literature. For

example, the precise mechanism of nefazodone-induced

toxicity is still unclear, with both reactive metabolite formation

(Kalgutkar et al., 2005) and transporter inhibition (Kostrubsky

et al., 2006) reported. Our imaging results suggest that

nefazodone induces cytoplasmic lipid accumulation, oxidative

stress, mitochondrial abnormality, and intracellular GSH

depletion (Fig. 1d). Recently, the role of mitochondria in

nefazodone-induced liver injury was substantiated by detailed

in vitro mechanistic studies (Dykens et al., 2008). Likewise,

our results highlight the importance of mitochondria, GSH, and

lipidosis in telithromycin-induced hepatotoxicity (Fig. 1c)

(Ross, 2007).

These multichannel image outputs can be further quantified

by automated image analysis algorithms using standardized

FIG. 1. Representative images from the human HIAT, in which human hepatocytes were treated with: (a) vehicle (0.1% dimethyl sulfoxide or 0.1% DMSO in

hepatocyte culture medium), (b) nimesulide, (c) telithromycin, (d) nefazodone, (e) perhexiline. Each set of images were obtained from the same image field, with

column 1, 2, 3, 4 being images of nuclei/lipids, ROS, MMP, and GSH, respectively. Each drug was treated for 24 h at 100-fold therapeutic Cmax (as listed in

Supplementary Table 1). Nimesulide caused a significant increase in ROS. Telithromycin, nefazodone and perhexiline caused significant decrease in MMP and

GSH. Some lipid droplets were also visible in nefazodone and perhexiline treated hepatocytes, as indicated by the lipophilic probe DRAQ5 that normally only

stains the nuclear DNA.
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image analysis procedures measuring the intensity and area or

size of any object of interest. A series of measurements from

these multispectral images was hence made for each drug,

resulting in a series of imaging outputs representing an

‘‘imaging profile’’ for a particular drug. In Table 1, vehicle-

treated control samples have an average value of 1 in all

imaging outputs and each drug-treated response in values

relative to 1. Using binary heat maps, researchers can rapidly

decipher the types of hepatocyte injury posed by the drug of

interest. Of the 30 drugs listed here, the first 11 drugs were

known to cause serious DILI in humans. Perhexiline (Shah,

2006), troglitazone (Scheen, 2001), nefazodone (Choi, 2003)

were withdrawn from the market due to hepatotoxicity or DILI

concerns. Tetracycline was known to be more hepatotoxic than

other antibiotics such as penicillin, which had a well-defined

record of low hepatotoxicity (Thiim and Friedman, 2003).

Nimesulide and sulindac (Aithal and Day, 2007) were well-

known drugs that caused higher incidences of liver injuries

than other nonsteroidal anti-inflammatory drugs such as aspirin

or ketotifen. Zileuton, labetalol, diclofenac, chlorzoxazone, and

dantrolene were explicitly second-line therapies or bear serious

warnings because of liver toxicity (Temple, 2001). These drugs

were identified as positive in the hepatocyte imaging assay. On

the other hand, drugs that are considerably safer to human

livers in clinical usage (i.e., those with a DILI label of N, for

Negative) were consistently identified as negative in the assay

(Table 1). The entire imaging profile data for the 344 drugs and

chemicals in our DILI drug database, can be found in Table 2

of the Supplementary Data online.

Statistical Analysis

We next examined the sensitivity (defined as the fraction of

correctly predicted positives to all true positives in the clinic)

and specificity (defined as the fraction of correctly predicted

negatives to all true negatives in the clinic) of this imaging-

based assay. Such an approach utilizes biological knowledge of

the assay to set thresholds from which predictive toxicity is

assigned (e.g., an increase in lipid and ROS corresponds to

toxicity, as well as a decrease in nuclei count, mitochondria

potential, and GSH). Figure 2 shows an exhaustive approach

using the ROC curve containing the paired true- and false-

positive rates for all possible thresholds for each imaging

measurement (Lasko et al., 2005). The best predictions occur

toward the top-left corner indicative of high true-positive and

low false-positive rates. Notice in Figure 2 that each individual

assay has a threshold where the false-positive rate is zero and

the true-positive rates are still between 0.1 and 0.3. In one

approach, we utilized these ‘‘zero-false-positive thresholds’’ to

convert the assay measurements into binary toxicity scores.

These binary scores can then be combined using Boolean logic

(Duda et al., 2000). A simple but intriguing result was obtained

using a logical OR of eight assays shown as the ‘‘HH Imaging

Final Score’’ (top black dashed line) in Figure 2, and in the

second rightmost column of Table 1.

While the logical OR method combining all the imaging

profile results provides insight on potential mechanisms of drug

toxicity retrospectively, it does not have the rigor of a testing

and training paradigm that suggests the future performance by

‘‘predicting’’ compounds not used to formulate the prediction.

We next used a random forest machine learning algorithm

(Breiman, 2001) to assess the predictive performance. Each

compound was scored by fraction of positive predictions it

received from the trees which had not been trained using it to

form an out-of-bag prediction score. The scores can then be

used for predictions and produce ROC assessments as shown in

the top red dashed line in Figure 2. Between the two top-left

corners of black and red dashed lines, the HIAT produced

a combined true-positive rate of 50–60% and a remarkably low

false-positive rate of 0–5% (Fig. 2). Three features contributed

most to the overall random forest model. They are, in

decreasing order of importance: MMP, ROS, and reduced

intracellular GSH level. Cell number, or nuclei count, is among

the least discriminative feature, indicating the assay is not

measuring cell loss (a simple measure of cytotoxicity).

DISCUSSIONS

The goal of our study is to apply simultaneous multispectral

live-cell imaging investigation on primary cultures of human

hepatocytes to derive a set of imaging measurements that is

predictive of drugs’ ultimate outcome of DILI in the clinical

setting. Even though we have not exhaustively examined all

drugs that have ever been marketed to date, nor have we

measured all cellular imaging parameters as deemed possible

by a combination of cellular stains and microscopic optics,

several insights were already gained by our investigation.

These insights have important implications for in vivo
correlations of DILI from the perspectives of concentration-

effect and mechanisms of liver toxicity.

Pharmacokinetic Considerations: What is Clinically Relevant
Concentration to Test In Vitro?

From the outset, to identify an idiosyncratic hepatotoxic

drug with a serious hepatotoxic event happening in less than 1

in 1000 patients is an Achilles’ task. In essence we need to

predict a population’s outlier response rather than its mean

response, using a single in vitro cell type obtained from

a limited pool of donors. The only way possible, without

testing more than 3000 different patients (FDA’s ‘‘rule of 3’’;

Powers, 2007), is to use reasonably well-accepted uncertainty

scaling factors. We used a scaling factor of sixfold to account

for population Cmax variability from the average therapeutic

Cmax that we collated from the literature, to account for patient

genetic (such as metabolic enzymes and transporters) and

epigenetic factors (such as age and pre-existing disease) which

affect drug clearances (Dorne et al., 2005). Another sixfold
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TABLE 1

The ‘‘Imaging Profile’’ Data from the HIAT, for a Selective List of 30 Drugs

Drug

DILI

label

Nuclei

count

(< 0.4 ¼
positive)

Nuclei

area

(< 0.4 ¼
positive)

ROS

intensity

(> 2.5 ¼
positive)

TMRM

intensity

(< 0.4 ¼
positive)

Lipid

intensity

(> 2.5 ¼
positive)

GSH

content

(< 0.4 ¼
positive)

GSH area

(< 0.65 ¼
positive)

GSH average

pixel

intensity

(< 0.4 ¼
positive)

HH imaging

final score

(logical

OR of eight

measures)

Human_

Cmax

(lg/ml)

0.1% DMSO N 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 N

Perhexiline P 0.82 0.91 0.00 0.00 1.48 0.01 0.02 1.08 P 0.6

Troglitazone P 0.71 0.85 0.00 0.01 2.90 0.01 0.02 1.08 P 2.82

Nefazodone P 0.45 0.52 0.00 0.04 1.81 0.01 0.03 2.10 P 0.4

Tetracycline P 1.04 1.06 430 0.10 2.90 1.13 0.82 1.97 P 9.3

Nimesulide P 0.96 0.92 27.3 1.43 2.86 0.88 0.98 0.87 P 6.5

Sulindac P 1.14 1.08 14.2 0.69 0.79 0.63 0.81 0.66 P 11.4

Zileuton P 1.08 1.01 4.83 1.32 3.46 0.92 0.67 2.16 P 3.1

Labetalol P 0.89 0.81 4.88 0.70 5.10 1.41 0.97 1.89 P 0.88

Diclofenac P 0.61 0.70 35.3 0.98 1.86 1.91 1.22 1.00 P 2.4

Chlorzoxazone P 0.48 0.74 8.39 0.78 1.70 1.01 1.65 1.31 P 0.5

Dantrolene P 0.72 0.78 8.54 1.23 1.58 1.57 1.17 0.98 P 1.24

Amitriptyline N 0.96 1.00 0.30 1.26 1.36 1.06 0.97 0.96 N 0.03

Pioglitazone N 1.13 1.11 0.88 1.69 1.38 0.57 0.87 0.87 N 1.1

Rosiglitazone N 0.66 0.79 0.44 1.04 1.66 1.52 1.38 1.13 N 0.4

Primidone N 0.96 0.91 0.62 0.90 1.19 0.75 0.95 0.91 N 1

Penicillin N 0.91 0.98 0.29 1.31 1.32 0.67 1.07 0.61 N 2.7

Melatonin N 0.97 0.96 0.68 0.95 0.93 0.91 1.00 1.00 N 0.006

Nadolol N 0.95 0.99 0.44 2.07 0.92 0.91 1.04 0.89 N 0.1

Ketotifen N 1.02 1.01 0.60 1.00 0.88 0.90 0.94 1.00 N 0.0004

Paromomycin N 1.00 1.02 1.02 1.66 0.93 1.23 0.99 0.99 N 23

Sumatriptan N 1.13 1.10 0.26 1.18 0.86 0.76 0.87 0.85 N 0.08

Famotidine N 1.20 1.15 0.47 1.15 0.89 0.96 0.84 0.91 N 0.1

Tacrine N 0.86 0.91 0.48 1.14 1.30 1.14 1.08 0.84 N 0.02

Simvastatin N 0.72 0.84 0.02 0.81 1.46 1.35 1.32 0.96 N 0.01

Aspirin N 1.04 1.00 0.58 1.25 0.87 0.62 0.94 0.50 N 1

Fluoxetine N 1.05 1.07 1.46 0.79 0.84 0.59 0.91 0.83 N 0.015

Propranolol N 1.12 1.05 0.50 1.08 0.89 0.76 0.87 0.70 N 0.05

Raloxifene N 1.15 1.04 0.17 0.76 0.89 1.10 0.83 1.06 N 0.0005

Paroxetine N 1.12 1.04 0.38 0.83 0.85 0.72 0.90 0.77 N 0.02

Buspirone N 0.99 1.00 1.02 1.13 0.98 0.68 0.98 1.14 N 0.002

Note. The binary heat map was produced by thresholds that best differentiated the DILI negative from positive drugs (the threshold used was listed under the heading for each measurement). Bold-faced

values indicate that the imaging measurement is within the DILI negative threshold, italic values indicate that the measurement falls outside of the DILI negative threshold (i.e., becomes positive). The

second rightmost column indicates the combined HH imaging test score, using a logical OR of the eight previous measurements (P means DILI positive, N means DILI negative). This procedure assigned

a DILI positive label to a compound if any single imaging measurement falls outside of the DILI negative threshold. All of these drugs were tested at 100-fold human therapeutic Cmax. The Cmax values

for these drugs are listed in the rightmost column.
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uncertainty factor was used to account for higher drug exposure

to the liver via liver portal vein for an orally dosed drug (Ito

et al., 2002). We used a final threefold uncertainty factor to

account for drug-drug or drug-diet interactions due to increased

usage of polypharmacy (Routledge et al., 2004), naturaceut-

icals (Singh, 2005), and potential for increased drug exposure

upon multiple days of dosing compared to the single-dose

Cmax values used in this study. Therefore, whenever possible,

orally dosed drugs were evaluated at a combined 100-fold of

the Cmax values that were annotated in our DILI database. In

a small fraction of cases where human therapeutic Cmax values

were not reported, that drug or chemical was tested at 100lM

(i.e., assuming a human single-dose therapeutic Cmax of 1lM).

In a dose-response study, it was found that the 100-fold Cmax

scaling factor represented a reasonable threshold to differen-

tiate safe vs. toxic drugs (see Table 3 of the supplementary

material on line). Such an expanded dose-response and/or time-

response studies may be useful to identify signals of initiating

injury, thus leading to further mechanistic exploration of

hepatic damage.

The Importance of Mitochondria and Cellular Redox States
to Organ Injury

Three features contributed most to the overall random forest

model. They are, in decreasing order of importance: MMP,

ROS, and reduced intracellular GSH level. These features, eval-

uated for the first time across so many drugs in a simultaneous

and multiplexed fashion, reinforce the notion that alterations in

mitochondrial energetics and cellular redox states are important

mechanisms of drug-induced hepatotoxicity. These alterations

may not be independent or mutually exclusive in the biological

sense, as ROS generated at lower drug dose may be a prelude

to mitochondrial damage and GSH depletion at a higher dose

(e.g., see Supplementary Table 3). HIAT is designed to mea-

sure a panel of the most common mechanisms of toxicity, not

the end result of cell death per se. While cytotoxicity may play

a role in some of the more toxic compounds, the more subtle

changes (e.g., ROS generation) can only be measured when

cellular membranes are still intact.

It was postulated that mitochondrion plays a key role in

idiosyncratic liver injury (reviewed by, Boelsterli and Lim,

2007; Kass and Price, 2008, and references therein). The

mitochondrial hypothesis implies that initially silent but

gradually accumulating mitochondrial injury in hepatocytes

can reach a critical threshold and abruptly trigger liver injury.

This hypothesis is consistent with the clinical findings that

idiosyncratic DILI is typically delayed (by weeks or months),

that among others both increasing age and polymorphisms in

the mitochondrial form of the manganese superoxide dismutase

are risk factors (Boelsterli and Lim, 2007), and that many DILI

positive drugs in our database clearly exhibit a mitochondrial

hazard in vitro. In parallel, oxidative stress is clearly involved

in an animal model of delayed onset DILI, and anti-oxidant

treatments such as resveratrol have consistently demonstrated

in vivo protection in this model (Kasdallah-Grissa et al., 2007;

Saravanan et al., 2007). Oxidative stress is also implicated in

cholestatic liver disorders and hepatitis C infections (Choi and

Ou, 2006; Sokol et al., 2006), and these pre-existing conditions

are known to sensitize the liver to additional drug-induced

damage. Our experimental findings are consistent with the

hypothesis that many ‘‘idiosyncratic’’ drug reactions indeed

cause subtle insults to the liver that are typically masked by

a ‘‘normal’’ threshold of this highly adaptable organ. Only

when such a ‘‘normal’’ threshold is genetically or epigeneti-

cally altered does frank liver toxicity emerge (Li, 2002;

Uetrecht, 2008; Ulrich, 2007; Watkins, 2005).

A Low False-Positive Rate toward Serious Clinical DILI

The fact that the prediction of HIAT to serious clinical DILI

as identified by Hy’s Law has a very low false-positive rate

made this testing strategy worthy of routine implementation in

the drug discovery and development process. In particular,

there are no shortages of clinically beneficial drugs that can

cause a transient increase in serum alanine aminotransferase

(ALT) activity without an increase in total serum bilirubin

(TBL) concentration, and they do not cause serious hepato-

toxicity in the clinic. Well-known examples of such drugs

include tacrine, simvastatin, aspirin, fluoxetine, propranolol,

raloxifene, paroxetine, and buspirone (FDA, 2007; Lee and

Senior, 2005; Senior, 2007). These drugs should be classified

as DILI negatives, as we did in this article. They were tested

FIG. 2. ROC curve of individual and combined assay predictivity. The

curve traces both true-positive and false-positive rates for all possible

thresholds for each imaging assay measurement (Lasko et al., 2005). The top

black and red dashed curves show the best combined results. They represent the

‘‘HH Imaging Final Score’’ and ‘‘Random Forest Model,’’ respectively (see

main text for details). The bottom dotted curve shows the results of random

assignment of toxicity (i.e., a ‘‘coin toss’’ baseline prediction of toxicity). Drug

classification: positive ¼ DILI positive ¼ hepatotoxic.
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and scored as negatives in the HIAT (Table 1). Hence the final

conclusions from HIAT are distinct from what have been

published about these drugs in the past (Chen et al., 2002;

Galisteo et al., 2000; Kalgutkar et al., 2005; Laville et al.,
2004; O’Brien et al., 2006; Pessayre et al., 1999; Tavintharan

et al., 2007; Xu et al., 2003; Zhao et al., 2007). The reason for

the high specificity of the HIAT may be a combination of (1)

the drug concentrations used have reasonable relevance to the

in vivo situation (e.g., 100x Cmax for an orally dosed drug), (2)

primary hepatocytes are nondividing cells and compared to

hepatoma cell lines are less sensitive to agents that may perturb

the cell cycle (Holownia and Braszko, 2004); (3) primary

hepatocyte culture in the sandwiched configuration maintains

more normal and balanced drug-metabolizing and transporter

functions (Bi et al., 2006; Gross-Steinmeyer et al., 2005;

Hoffmaster et al., 2004; Page et al., 2007). The HIAT was

evaluated against a large number of drugs (> 300 in total) with

a significant number of DILI negative drugs, including those

that cause a transient increase in ALT but not TBL (as

discussed above). Therefore the exceptionally high specificity

and positive predictive value reported here can probably be

translated to a ‘‘real-world’’ scenario. The high positive

predictive value toward the ultimate in vivo outcome (in this

case serious DILI) is a striking contrast to the current in vitro
tests for drug-induced genotoxicity (Kirkland et al., 2007), and

should be a continued emphasis in developing, evaluating, and

implementing in vitro test systems for the prediction of other

drug-induced toxicity.

It should be noted that the current tests can detect

‘‘metabolic’’ (nonallergic) idiosyncratic toxicity, but not

allergic idiosyncrasy that requires the presence of multiple

cell types of the immune system. Further tests should be

developed to detect allergic toxicity with a high degree of

specificity. The 40–50% of drugs that were missed by the

current test will become a fruitful area of future research. For

example, clinical hepatotoxicity was observed with the

combined usage of didanosine and stavudine, two nucleoside

analogs that inhibit HIV reverse transcriptase. These two drugs

by themselves were both negative in the current HIAT (see

Supplementary Table 2). Future research should explore drug-

drug combinations, longer-term treatment schedules, and

additional imaging endpoints (e.g., mitochondrial DNA

content, hepatobiliary transporter activity, etc.)

It is well-known that existing animal models are not very

predictive of human DILI. The combined preclinical animal

testing from rodents, dogs, and monkeys can only identify

about half of hepatotoxic drugs in humans (Olson et al., 2000).

By combining a well-defined model of primary human

hepatocyte cultures and high content imaging technology, we

have developed an in vitro testing approach that is capable of

identifying many DILI positive drugs that were previously

missed by animal testing. The cellular imaging technology

described here is particularly powerful in identifying multiple

mechanisms of drug-induced toxicity. It exhibits high speci-

ficity, and can be readily adapted and expanded upon by

applying other cell types and/or other fluorescent or light-

emitting indicators. Given the heightened attention to the issue

of DILI by the FDA (2007) and EMEA (2008), the data

presented here provide a new approach for future hepatotox-

icity testing.
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