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This paper summarizes the state of the science of probabilistic

exposure assessment (PEA) as applied to chemical risk charac-

terization. Current probabilistic risk analysis methods applied to

PEA are reviewed. PEA within the context of risk-based decision

making is discussed, including probabilistic treatment of related

uncertainty, interindividual heterogeneity, and other sources of

variability. Key examples of recent experience gained in assessing

human exposures to chemicals in the environment, and other

applications to chemical risk characterization and assessment, are

presented. It is concluded that, although improvements continue

to be made, existing methods suffice for effective application of

PEA to support quantitative analyses of the risk of chemically

induced toxicity that play an increasing role in key decision-

making objectives involving health protection, triage, civil justice,

and criminal justice. Different types of information required to

apply PEA to these different decision contexts are identified, and

specific PEA methods are highlighted that are best suited to

exposure assessment in these separate contexts.

Key Words: applied probability analysis; assessment methods;

environmental chemicals; modeling; Monte Carlo; toxicity risk

characterization.

Exposure assessment provides key input to the process of

source-exposure-dose-response-risk characterization that

addresses questions concerning the degree to which environ-

mental contaminants pose risks to human and/or ecological

health (NRC, 1983, 1994; USEPA, 1997a). A variety of

probabilistic risk analysis (PRA) models and methods may be

used to characterize uncertainty or lack of knowledge (U);

interindividual variability (V) in a specified population at

risk; and intraindividual, spatial, temporal, or other non-

interindividual types of variability (W) in exposures pertaining

to a defined exposure scenario. A probabilistic framework

calling for distinctions among uncertainty and different types

of ‘‘variability’’ may seem unwieldy, but such systematic

distinctions pertaining to inputs (such as exposure character-

ization) to risk analysis are generally needed to properly

characterize the U, the V, and joint U-and-V (JUV) dimensions

of predicted risk (Bogen, 1990, 1995; Bogen and Spear, 1987;

Cullen and Frey, 1999; NRC, 1994; USEPA, 1997b). Thus to

the extent JUV characteristics of predicted risk are relevant to

risk management decision making, probabilistic exposure

assessment (PEA) must reflect U-, V-, and W-characteristics

of exposures that contribute to predicted risk. Examples of U,

V, and W that arise in PEA are:

� Uncertainty (U): Uncertainty in the rate at which specific

untested chemicals are taken up percutaneously into systemic

distribution through human skin; statistical error in the

estimated geometric mean and standard deviation of pollutant

concentrations in air; model-specification error associated with

air-concentration profiles made by alternative air-dispersion

models applied to a specific chemical-release scenario;

alternative plausible chemical-release scenarios;

� Interindividual variability (V): Interindividual differ-

ences in physical and pharmacokinetic characteristics (e.g.,

gender, body weight, rates of breathing, and metabolism) that

result in different corresponding magnitudes of chemical

contact or uptake; person-to-person differences in behavioral

scenarios (daily shower/bath duration, years of residency at

a given location, dietary preferences) that yield differential

exposures in a population at risk; person-to-person differences

in behavioral scenarios (daily shower/bath duration, years of

residency at a given location, dietary preferences) that govern

route-specific exposures;

� Other variability (W): Within-person differences in

behavior patterns, physical characteristics and pharmacokinetics

that occur during different (i.e., neonatal, infant, childhood vs.

adult) periods of life; short-term and seasonal variations in

meteorological conditions that affect exposure; temporal patterns
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in prevailing environmental concentrations of specified chemical

contaminants (e.g., lead in air, pesticides in crop residues, etc.).

Specific analysis of W may be required in exposure

assessment, to distinguish and characterize its U and V

dimensions usefully, and/or to provide information needed to

model the (dose-response) relation of exposure to risk. For

example, although duration-specific time-weighted average air

concentrations are often used to assess potential respiratory

hazards posed by airborne toxic chemicals, substantial

concentration fluctuation (i.e., temporal variability W) that

occurs over biologically relevant time periods may be vital

when toxicity is better predicted by peak than by mean

exposure levels. Likewise, intraindividual variability (W) of

inhalation rates per unit body weight over a lifetime may be

required to properly assess lifetime average inhalation doses

(Salem and Katz, 2006).

Specific methods appropriate to characterize these dimen-

sions of risk, and each of its components, depend on the type of

decision to be supported. Section ‘‘Decision-Making Paradigm

Determines How PRA Should Be Applied for Pea’’ focuses on

the development of different decision contexts. Section ‘‘PRA

Methods Used In Exposure Assessment’’ reviews the range of

PRA methods applied to enable PEA. Recommendations for

improved PEA methodology are presented in section ‘‘Con-

clusion.’’ Approaches used in the dose-response portion of

a chemical assessment may critically affect whether and how

PRA is applied in exposure assessment.

DECISION-MAKING PARADIGM DETERMINES HOW

PRA SHOULD BE APPLIED FOR PEA

By making explicit the inferences, preferences, facts, and

assumptions concerning risk-related information bearing on

a decision problem, PRA can facilitate decisions in a variety of

different contexts (Parkin and Morgan, 2006; Raiffa, 1968).

Problems and progress on technical issues in applying PRA to

exposure assessment addressed below are best understood by

reference to underlying purposes for which such assessments

are conducted. In a research-oriented assessment, comprehen-

sive aspects of exposure and risk may be of interest. More

generally, however, the purpose being served tends to define

the relevance and utility of different risk-related aspects of

exposure information to be characterized. The contribution of

PRA to exposure assessments thus depends on how such

assessments in turn contribute to solving different kinds of

decision-making problems. In practice, most such decisions

address four primary decision-making goals: (1) environmental

health protection, (2) environmental health triage (as defined

below), (3) civil justice, and (4) criminal justice. The decision-

making processes used to address these goals may be thought

of as decision ‘‘paradigms,’’ because they each entail a number

of unique attributes that imply related sets of legal and policy

constraints and values, which in turn, imply corresponding sets

of characteristic decision-optimization rules. The application of

these rules may be facilitated, in turn, by different types of

information bearing on U and V in exposure, the corresponding

predicted risk, or both. Thus, decision criteria with respect to U

and V tend to differ in different decision-making contexts. U

and V are present in both the costs and benefits that

characterize the range of alternatives being assessed in any

decision paradigm.

PRA in Exposure Assessment to Support Environmental
Health Protection

The classic paradigm in which PRA is applied to exposure

assessment is to develop environmental health protection goals.

These goals support the pursuit of public health; environmental

protection, regulation, and remediation; occupational health and

industrial hygiene; radiation safety; sanitary engineering; food

and consumer product safety; regulatory toxicology; and

regulatory compliance. The major purpose of these endeavors

is protection against human and ecological harm due to toxic

environmental exposures. Because public policies developed for

managing risks are generally precautionary, rather than being

focused on accurate predictions, PEA used to develop these

policies must facilitate the characterization of ‘‘upper bound’’

(albeit not unreasonably conservative) estimates of risk (Bogen,

2005; USEPA, 2005a). Inference gaps tend to be bridged by

‘‘conservative’’ ‘‘uncertainty’’ or ‘‘safety’’ factors that err on the

side of safety (NRC, 1983), using feasibility and/or cost

constraints (as applicable) defined by statute (Bogen, 1982).

Notable exceptions to this generalization occur in the context

of regulatory efforts to comply with statutory requirements

(Bogen, 1982) or other conventions that involve explicit

weighing of costs and benefits. In the field of ionizing radiation

protection, for example, a quantitative, predictive approach to

PEA (radiation dosimetry) and associated radiological PRA has

emerged as a result of scientific deliberation and regulatory

processes (Patton, 2000).

Another exception involves quantitative exposure and risk

assessments done over the last quarter-century to support

decisions about whether to retain or revise the National

Ambient Air Quality Standards (NAAQS). The 2007 final

rulemaking for the revised ozone 8-h NAAQS included

reference to a PEA using the Air Pollution Exposure model.

A PRA was also conducted for the PM2.5 NAAQS (2006)

rulemaking. The resulting risk estimates were included in the

OAQPS staff paper and discussed in the Federal Register, but

were not relied upon to select specific standards (USEPA,

2003, 2006). In its process of reviewing the PM standards,

probabilistic risk estimates were considered by the U.S.

Environmental Protection Agency (USEPA) as a major

component in the recent decision on the PM2.5 standards.

The PM2.5 risk assessment relied directly on health-effect

estimates that were based on epidemiological studies and

included statistical uncertainty based on the standard errors
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reported in those health-effect estimates. Also, a recent USEPA

effort to carry out expert elicitation on the relation of annual

mortality to annual incremental change in PM2.5, for example,

used expert elicitation to develop distributional information

about dose/response to inform benefits analyses (Industrial

Economics, 2006). Probabilistic exposure analysis is not

generally used when state and local agencies develop State

Implementation Plans (SIPs) that lay out implementation

measures to attain the NAAQS. Although there is nothing to

prevent state or local agencies from including this type of

analysis in their SIPs, there are also currently no specific

incentives for doing so.

Prior to the advent of major environmental legislation

passed starting in the late 1960#s and early 1970#s, regu-

latory protection from exposure to harmful environmental

agents through the application of quantitative, predictive

toxicology was largely restricted to the effects of food

additives, drugs, and occupational exposures, and uncertain-

ties were addressed primarily by application of conservative

assumptions and safety margins. The exception in the field

of ionizing radiation protection was noted above. In the

mid-1970#s, USEPA adopted a regulatory position that,

absent specific data indicating otherwise, environmental

chemical carcinogens would be assumed to have a no-

threshold dose-response relation analogous to that assumed

for ionizing radiation, in view of the plausible role that dose-

induced irreversible somatic mutations could play in both

chemical and radiogenic cancer (Albert et al., 1977; USEPA,

1976). The regulatory development and adoption of

quantitative exposure and risk assessment methods pertain-

ing to a host of environmental chemical exposure scenarios

began soon thereafter in the United States, providing a key

source of decision problems addressed by increasingly

quantitative methods used in the developing fields of

environmental exposure and risk analysis (Bogen, 1982;

Burmaster and Anderson, 1994; NRC, 1983, 1994; USEPA,

1997b).

PEA methods to support PRA applications to environmen-

tal health protection are used to design, or comply with,

protective limits on environmental concentrations and expo-

sures, where these methods provide an objective quantitative

framework with which to identify acceptable upper bounds

with respect to U and V in corresponding predicted risk

(Bogen and Spear, 1987; NRC, 1994). Because by definition,

upper bounds on V in exposure and associated risk model

corresponding heterogeneity, these may be used to express

quantitative limits on associated inequity; whereas because

those on U model lack of certainty, they may be used to

express quantitative goals concerning protection and pre-

vention. A key constraint is that PEA methods used in this

context are generally required, as a practical matter, to be

reasonably transparent both to understand and to implement.

Overly complex methods tend not to be adopted when simpler

ones are available that perform adequately in exposure

assessments supporting health protection. Application of

PEA methods in this context raises a variety of policy and

legal issues concerning appropriate interpretation of the

output of these analyses (Poulter, 1998).

PRA in Exposure Assessment to Support Environmental
Health Triage

Environmental health triage decisions are required when—

due to resource constraints and/or exposure-scenario complexity—

trade-off decisions must be made about the method, strategy,

and/or extent of mitigation or remediation of environmental

contamination to be undertaken (Bogen, 2005). A requirement

for this decision paradigm may arise ex post facto (or ex ante,

for planning purposes) to address situations such as emergency

response, homeland security, and military course-of-action

problems (NRC, 2004). Exposure and risk analysis needs to be

predictive (unbiased) in order to be most effective at ensuring

that any triage decisions that must be faced are decisions that

minimize expected casualties to the extent feasible (NRC,

1994, 2004). Specifically, emergency and military medical

personnel must routinely make triage decisions, which attempt

to minimize losses by efficiently allocating limited resources

after assessing competing exposures, risks and benefits as

accurately as feasible. In contrast, those engaged in assessing

and controlling chemical risks have historically operated in an

environmental health protection decision-making paradigm,

primarily in the fields of occupational and public health,

industrial hygiene, sanitary engineering, environmental and

regulatory toxicology, with historical emphasis (appropriately)

on protection and prevention through exposure limitation—

applications that do not routinely involve explicit, life-and-

death triage decisions (see ‘‘PRA in Exposure Assessment to

Support Environmental Health Protection’’), rather than on

accurate (unbiased) prediction of adverse consequences when

required to make effective trade-off decisions (NRC, 1994,

2000, 2004).

Recent homeland-security situations call attention to the fact

that methods and resources—analogous to those well established

and readily available to support occupational and environmental

health protection—do not yet exist specifically to support

environmental health triage decisions, but need to be developed

to respond effectively to complex scenarios involving large-scale

chemical exposures (Bogen, 2005). Methods currently in place

for such scenarios either fail to address U probabilistically, or

have nonpredictive designs that generally limit meaningful

support only to environmental health protection goals, or both.

To effectively support triage decisions, PRA methods for

exposure assessment must facilitate characterizing the degree of

accuracy and precision (i.e., limiting U) in estimated population

risk (i.e., in the estimated number of casualties). Time- and

population-averaged values of V in exposure can suffice to

estimate expected casualties and related error bounds in risk

assessments that involve only linear or nearly linear dose-

response models (Bogen, 1990; Bogen and Spear, 1987).
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PRA in Exposure Assessment to Support Civil Litigation

In Europe, a civil law tradition tends to defer more to

‘‘expert’’ authorities, and to rely heavily on preemptive

precautionary regulation rather than on ex post facto liability

assignment through litigation. However, a ‘‘more likely than

not’’ standard of evidence for harm causation is required by

U.S. common law to attain remedies in civil litigation. The

U.S. civil litigation model increasingly allows statistical and

probabilistic evidence to play a role in presenting legal

evidence of harm causation. Because current rules for

admissibility of scientific evidence in the United States require

a plaintiff to establish and quantify chemical exposure

sufficient to cause the alleged harm, chemical exposure and

dose reconstruction is becoming a standard technique to

evaluate plaintiff claims in toxic tort litigation, particularly

when there is substantial uncertainty in exposure history

(Brannigan et al., 1992; Finley, 2002). In this decision context,

PRA analysis can be used to help estimate the likelihood that

one or (any specified number) of cases of harm resulted from

a specified exposure of a defined person or class, in direct

relation to the burden of proof at issue.

PRA in Exposure Assessment to Support Criminal
Prosecution

Criminal prosecution (e.g., for individual or corporate

criminal negligence resulting in harmful environmental con-

tamination) in the United States requires a ‘‘beyond a reason-

able doubt’’ (forensic) standard of evidence, which increasingly

involves or requires probabilistic evidentiary analysis and

counter-analysis by plaintiff and defendant (Aitken, 1995).

Application of PRA methods to exposure assessment becomes

critical in this context, when evidence concerning causality or

motive involves uncertain levels of toxic exposure. Again,

a key limitation on PRA methods used in this context is that

these methods must be readily understood by a lay jury. In this

decision context, V may be limited to a specific harmed person

or subpopulation, and PRA methods may assist in the design or

interpretation of forensic evidence.

PRA METHODS USED IN EXPOSURE ASSESSMENT

Background and History

Explicit techniques for addressing uncertainty and variability in exposure

and risk analysis have been introduced in the United States during the past

30–40 years. Probabilistic techniques, in particular, were boosted into the spotlight

with the publication of the U.S. Atomic Energy Commission–sponsored

‘‘Reactor Safety Study’’ (U.S. Nuclear Regulatory Commission (USNRC),

1975). Prior to the Study’s release, the NRC relied on qualitative safety

assessments and goals; however, the Study extended the analysis by including

event trees and potential accident scenarios that were assigned probabilities.

The step of assigning probabilities transformed the endeavor, but not without

introducing significant tension (Lewis et al., 1978). Probabilities were

estimated based on both objective information such as historic records, and

subjective information such as expert judgment, leading to criticism about their

soundness, subjectivity, and reproducibility (Cooke, 1991). Concerns about the

degree of uncertainty encompassed in probabilistic judgments, both regarding

a potential excess of risk conservatism and a potential lack of such, continue to

evoke these early criticisms. In addition, the practice of assigning probabilities

to potential adverse consequences stemming from processes, designs, and

decisions has continued to evolve despite the challenges.

In 1983, the National Research Council (NRC) outlined the basic steps used

to address human health risk analysis in a seminal publication known as ‘‘the

Red Book,’’ intended to foster a more systematic, standardized approach to the

process of environmental risk management by regulatory agencies (NRC,

1994). The recommended approach involved scientific steps of hazard

identification, exposure assessment, dose-response assessment, and risk

characterization, which together contribute to a final risk management step

that (in accordance with applicable, albeit typically terse and generic, statutory

language) renders a societal judgment concerning risk acceptability (NRC,

1983). The report did not mention ‘‘variability’’ at all, and addressed

uncertainty primarily through its description of key gaps in knowledge that

often impede the process; in order to reach decisions, each such gap had to be

surmounted by adopting a corresponding ‘‘inference bridge,’’ typically in the

form of a health-conservative default assumption (NRC, 1983).

During the late 1970#s and early 1980#s, spurred by application computer-

intensive methods to characterize uncertainty in the field of nuclear safety

(discussed above), increased accessibility among the environmental health re-

search community to computational power offered by small-scale (e.g., desktop)

computers generated interest in and exploration of more explicit ways to

analyze and characterize uncertainty in a wide range of fields, including PEA

and PRA. As concepts and recommendations for PEA and PRA methodology

were developed (e.g., Bogen, 1990, 1995; Bogen and Spear, 1987; Burmaster

and Anderson, 1994; Burmaster and von Stackelberg, 1991; Cox and Baybutt,

1981; Cullen and Frey, 1999; Seiler, 1987; Smith and Charbeneau, 1990; Price

and Chaisson, 2005; Price et al., 2003; Frey and Zhao, 2004), scientific,

government and international organizations considered these advances and

developed guidance for PEA-related U and V analysis (International

Programme on Chemical Safety [IPCS], 2000; NRC, 1994, 1996; USEPA,

1985, 1992, 1995; WHO, 2008). A catalyst of transition to this new approach

was the clear emphasis placed on U, V, and JUV in exposure and risk analysis

by the NRC (1994) ‘‘Blue Book’’ that updated its 1983 ‘‘Red Book’’ mentioned

above, based on analytic nomenclature and methods developed specifically to

facilitate and communicate such analysis (Bogen and Spear, 1987; Bogen,

1990). In particular, Bogen and Spear (1987) showed how the relationship

between JUV in estimated exposures and other inputs used to model individual

risks, to U in individual risk, and to U in estimated population risk, can be

characterized only if U- and V-related distributions used to characterize these

inputs are treated separately in PEA and PRA (e.g., using a two-stage or

‘‘nested’’ Monte Carlo approach). This requirement motivated the NRC (1994)

recommendation to distinguish U- from V-related distributions systematically in

PEA and PRA.

The combined impact of the new focus on detailed quantitative JUV

characterization of toxic exposures and risk has facilitated numerous and

growing applications of PEA (e.g., Bosgra et al., 2005; Chen et al., 2007; Citra,

2004; Cullen, 1995, 2002; Driver et al., 2007; Hart et al., 2003; Price and

Chaisson, 2005; Slob, 2006; USEPA, 2001; Zartarian et al., 2000). PEA is

supported by databases such as the Exposure Factors Handbook (USEPA,

1997a), which includes data and distributions representing variability in many

exposure factors (detailed in section ‘‘Specifying Variability and Uncertainty in

Model Inputs’’), along with some information that can be used to characterize

uncertainty in these estimates. Probabilistic risk assessment has been adopted in

the United States for evaluating food safety (Gibney and van der Voet, 2003;

U.S. Food and Drug Administration and U.S. Department of Agriculture [FDA

and USDA], 2003). Similarly, PEA methods have increasingly been adopted,

developed, and applied worldwide (e.g., IPCS, 2000; Mekel and Fehr, 2001;

NRC, 2000; Öberg and Bergbäck, 2005; Okada et al., 2008; U.K.

Interdepartmental Liaison Group on Risk Assessment [UK ILGRA], 1996,

1999; WHO, 2008).
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Increasingly routine applications of probabilistic approaches to exposure

assessment have been driven by diverse factors, including the rise of

toxicological tests that generate large amounts of data (e.g., genomics,

proteomics, and metabonomics), the increasing cost of traditional approaches,

increased use of physiologically based pharmacokinetic (PBPK) models, new

exposure assessment software tools (van Veen, 1996), and increasing

reluctance to use animals in testing. By this new approach (Fig. 1), PEA

aims to model the source-to-outcome chain using a series of linked models that

represent various steps, including physical and chemical processes in the

environment, human behavior, and pharmacokinetic and pharmacodynamic

processes (USEPA, 2005b). Such models can address the variation in substance

concentrations in space and time, and the variation in human behavior,

physiology, and dose response. Tools developed for assessing model- or

parameter-specific U or V can be applied to each model separately or in

combination, though care must be taken to interpret U and V in resulting PEA/

PRA characterizations appropriately (Bogen, 1990; Bogen and Spear, 1987;

Burmaster and Anderson, 1994; Cullen and Frey, 1999; NRC, 1994; USEPA,

1997a,b).

Not all exposure or risk assessments need to proceed in a sequential fashion

through each link in series, as shown in Figure 1. Decisions about appropriate

ambient air or water quality standards, for example, focus on relating exposures

to ambient concentrations rather than to sources. Likewise, environmental

epidemiology studies often focus on the relationship between ambient

concentrations and a measure of health-effect response, without explicit

models, or even characterization of intermediate (exposure to dose to effect)

steps involved. To develop control strategies that will reduce ambient

concentrations, and therefore exposures, source-to-concentration as well as

the concentration-to-exposure relationships must be quantified. In particular,

more rigorous quantitative characterizations of W and/or V in exposure (as well

as in other inputs used to model risk) are generally needed for unbiased

assessments whenever risk is modeled as a substantially nonlinear function of

exposure and dose. For example, when acute toxicity is predicted better by peak

than by time-weighted average exposure concentrations, PEA used to model

this endpoint must reflect U, V, and W as these characteristics pertain to the

more mechanistically relevant (biologically effective) peak-dose metric.

Likewise, if mode of action considerations indicates that a nonlinear function

of exposure (and of associated dose rate) best models cancer risk posed by

a particular chemical, short-term, less-than-lifetime exposure estimates would

be more appropriate than lifetime average daily dose to assess cancer risk in this

case (USEPA, 2005a).

Methods for Estimating Uncertainty and Variability in Exposures

No single approach to dealing with U and V is applicable across the broad

range of decision contexts discussed above, especially in light of the quality

and quantity of available information. Empirical measurements, subjective

judgments, model results, historical records, and other information sources all

may contribute to our ability to represent uncertainty and variability in an

exposure scenario, model input, estimate, or analysis. An array of techniques

for addressing U and V exists, including both qualitative and quantitative

approaches, and spanning the spectrum from simple bounding to sophisticated

numerical analysis. The context of the analysis can inform selections from

among these available techniques.

Figure 2 summarizes the relationship among key elements of a risk

assessment, including the decision-making context, knowledge base, modeling

steps, and choice of techniques. The stakeholders and decision makers typically

would define the key objectives of the assessment, as well as the exposure

scenario to be assessed. For example, what key subgroups should be included,

and what exposure pathways might be of concern to the general public or an

exposed population that is demanding action? Of course, the ability to define

the scenario will also depend on the information base. The choice of models for

the risk assessment will be influenced by the scenario to be analyzed and the

availability of information. The choice of techniques for characterizing

variability and uncertainty in inputs, propagating such information through

a model, and performing sensitivity analysis will depend in part on the

information basis and in part on compatibility among these three types of

techniques, as well as the characteristics of the model(s) themselves.

PEA should produce various types of information of direct relevance to

decision makers and stakeholders. On receiving such information, decision

makers and stakeholders may wish to refine or change the objectives of the

assessment, leading to another iteration of the basic definition of the problem

(discussed in more detail in section ‘‘Iterative Tiers of Analysis’’). Likewise,

the results of the sensitivity analysis might be used to determine key areas of

uncertainty for which additional information is needed to reduce uncertainty.

Although not shown explicitly, other types of feedback can occur. Furthermore,

although the information base is shown as providing input to decision makers

and stakeholders, as well as to the assessment itself, the manner in which the

information is interpreted and used can be quite different. It cannot be

overemphasized that iterative collaboration among exposure and hazard/

toxicology professionals working on a specific assessment, starting as early as

feasible in the process, can effectively facilitate effective problem formulation

and issue identification.

FIG. 1. Modeling the chain of sources to outcome (USEPA, 2005b).
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Qualitative analysis. In situations characterized by fundamental gaps in

understanding, for which the time frame or other constraints rule out the

acquisition of additional information, it may not be possible to assess exposure

and risk quantitatively. However, a qualitative discussion of major assump-

tions, sources of uncertainty, and their projected impact on the analysis can

contribute great insight even in the absence of quantitative treatment. In some

cases, it may be possible to develop plausible scenarios and/or decision

contexts to qualitatively represent different assumptions about unresolved

scientific uncertainty or future events. For example, the International Panel on

Climate Change has developed future emissions pathways (i.e., scenarios

representing the future use of fossil fuel by the world’s population), which are

used to drive global climate models (GCMs) (International Panel on Climate

Change [IPCC], 2001). The GCMs predict global temperature and precipitation

in a future climate conditional on any single assumed emissions scenario. It

may be difficult to assign probabilities to alternative possible futures for

political, scientific or other reasons; however, this is often done as a practical

matter, if only to compare scenario-specific outcomes. Alternative scenarios

may be combined assuming equal likelihoods, or by using more sophisticated

weighting schemes (Giorgi and Mearns, 2002, 2003; Jones, 2000; Tebaldi

et al., 2004, 2005; Markoff and Cullen, 2008; Wigley and Raper, 2001).

Qualitative analysis methods can be classified as unstructured, partially

structured, or structured (Frey et al., 2003a). In all three cases, the goal is to

develop not only a judgment or estimate of uncertainty, but to understand the

basis for that judgment or estimate. Qualitative methods are based on

judgments of epistemic status, and they are based on some type of framework

for rational argument analysis. In the Classical School, there are formal rules

for such analysis (Brown, 1988). In the Dialogical School, rules are also

important, but there is more explicit acknowledgment of the possibility of

rational disagreement over what the rules might be, and regarding when they

should be applied (Bernstein, 1983). Qualitative analysis methods can be used

to structure discourse on a particular topic, and they can also be used to make

inferences regarding ‘‘weight of evidence.’’ If results of a qualitative analysis

(e.g., for the purpose of scenario-identification, model-selection, or parameter-

bounding) are to be used to conduct PEA, each such result must ultimately be

quantified, at least on a conditional basis, in order for it to have any direct effect

on the PEA output.

Quantitative analysis. Quantitative PEA requires treatment of model

uncertainty in addition to relevant exposure scenarios. Each of these

requirements is discussed below.

Model Uncertainty. Models are used in all facets of exposure and risk

analysis to describe natural and technological systems from which risks

emanate, to represent the fate and transport of agents of risk through the

environment, to describe interactions of human and other biological systems

with agents of risk, and to estimate the ultimate effects of these interactions.

Modeling always introduces U to a PEA, because mathematical models are by

definition tools used to approximate reality. This source of U may be quite

substantial relative all other sources of U characterized in a PEA (Rojas et al.,

2008). Key model-U concepts include precision, accuracy, validation,

extrapolation, and numerical resolution (see Cullen and Frey, 1999; Frey

et al., 2003a, b). Although model validation may be pursued by comparing

predictions against observations, a model that predicts accurately or precisely

for one setting or purpose may perform poorly for another. For example,

a steady-state compartmental model, which may be adequate for predicting

long-term average contaminant concentrations distant from a clean-up site, may

be inadequate for short-term predictions of average concentration close to the

site because of its failure to reflect dynamic, daily fluctuations that drive short-

term contaminant transport among media (Cullen, 2002). Model U also arises

whenever there are multiple plausible model forms or parameterizations of

a single model.

To address model U, analysts may: assign probabilities to each alternative;

explore updating of mechanistic models using Bayesian techniques to combine

individual or multiple datasets with underlying model structures (Bates et al.,

2003); formally assess the relative merits of different model variables by

empirical or fully Baysean variable-selection methods applied to single,

multiple or fully nested models, for example, using tree models, graphical

FIG. 2. Simplified influence diagram of the decision-making context, information base, techniques, and steps in a typical risk assessment modeling

approach.
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models, or Markov Chain Monte Carlo methods employing Metropolis-

Hastings, Gibbs, reversible-jump, path-ratio, or ratio-importance single-chain

sampling algorithms (reviewed by Clyde and George, 2004); or develop

scenarios, each of which adopts a single model structure, form, or

parameterization as true. These approaches may transform model uncertainty

into input or parameter uncertainty, and vice versa. Logical ambiguity between

model and parameter uncertainty is a basis for questioning the value of PEA or

PRA methods and policies premised on the existence of such a distinction (see

NRC, 1994, p. 187, footnote 4). However, the distinction is useful at least

insofar as it motivates model improvement.

Scenarios. In analyzing risks posed by human exposures to environmental

chemicals, assumptions must be made regarding the exposure scenarios within

which chemicals, emission sources, exposed subpopulations, pathways of

pollutant transport (e.g., air, groundwater), activity patterns and locations of

exposures, exposure pathways (e.g., inhalation, ingestion, dermal), and other

considerations (Cullen and Frey, 1999). Failure to properly account for

significant factors that affect real-world exposures may lead to substantial

biases. For example, if the primary means of exposure to a particular chemical

is based on long-range transport and indirect exposure pathways, such as

ingestion of local meat and dairy products, but the analysis fails to account for

this, then exposure may be severely underestimated.

There are no rigorous methods for dealing with U pertaining to alternative

plausible scenarios that may pertain to a specific decision problem (e.g., which

scenarios will most likely arise during lifetime exposures to a defined

population), A collaboration of persons with varying perspectives on a problem

can brainstorm to identify the key dimensions necessary to specify a scenario

(such as pollutants, transport pathways, exposure routes, susceptible subpopu-

lations, averaging time, geographic extent, time periods, activity patterns, etc.),

and then make decisions regarding how each of these dimensions will be

addressed (Frey et al., 2003a). Such scenario U can be explored indirectly by

comparing alternative scenarios or by estimating the contribution of individual

pathways to total exposure. Often, it is not known a priori which pathways or

other aspects of a scenario may be the most important, and resource limitations

may dictate that effort be expended only on the most evidently important

pathways. A tiered approach to such an analysis, starting with simple screening

models and progressing to more refined (and accurate) models, can be used to

iteratively evaluate the relative importance of different aspects of a scenario, and

to exclude from further analysis those portions that contribute relatively little to

total exposure, risk, costs, benefits, or other measures of concern. It is difficult to

prove that all, or event the dominant, pathways contributing to potential exposure

have been captured. A consensus-building process is thus typically used to define

the ultimate scope of scenarios to be considered in PEA, informed by

a downward trend toward a negligible magnitude in predicted contributions to

exposure arising from consideration of additional scenarios.

Specifying variability and uncertainty in model inputs. To allow U and

V to be characterized in estimated exposures and associated assessment of toxic

risk, variability and uncertainty must first be characterized systematically in

model inputs (Bogen and Spear, 1987; NRC, 1994). This can be done using

empirical approaches, judgment-based approaches, and methods based on

underlying mechanisms. In reality, most distribution development of model

inputs for application to exposure analysis combines multiple information

sources, including judgment. The USEPA (1997a) Exposure Factors

Handbook is key compilation of data and derived relationships that may be

used to specify V (and to estimate some aspects of U) pertaining to various

aspects of exposure, including sex-, age-, ethnicity-, season-, and/or time-of-

day–specific reference values and/or distributions for: drinking water ingestion;

soil ingestion; inhalation; body/dermal surface area and soil adherence, body

weight, lifetime duration, food intakes (fruits and vegetables, fish and shellfish,

meat and dairy products, grain products, home-produced food products); breast

milk intake; daily activity patterns (bathing, showering, sleeping, occupational

and residential durations, time inside/outside the home, time in cars/trucks/etc.,

doing dishes/laundry, sweeping/dusting, playing in sand/gravel/dirt, playing on

grass, working, food preparation, gardening, exercising, swimming, smoking,

etc.); use of and exposure to consumer products; and residential building

characteristics (volumes and surface areas, ventilation rates, water use, indoor

deposition rates and loads for dust and soil, and an overview of generic

considerations pertaining to airborne and waterborne residential contaminants).

It may be important to consider statistical U explicitly that pertains to

estimates of parameters used to specify plausible or theoretically justified

distributions representing U, V, or W in model inputs. In practice, doing this

requires using a compound form of each such distribution, in which a U-

distribution is used to model U in each estimated parameter required to specify

the parent (U, V, or W) distribution. For example, if n measures of pesticide

residue log-concentration, log(C), in a particular household garden crop

throughout a state are found to be approximately normally distributed with

a sample mean and standard deviation of log(C) equal to �c and sC, respectively

(i.e., ~Nð�c; sCÞ), then variability in log(C) should not be modeled as ~Nð�c; sCÞ,
but rather JUV in log(C) should be modeled as a doubly compound normal

distribution ~N(l, r), with U in parameters l and r modeled (using

Chochran’s Theorem) as ð�cþ sCTÞ and
�
sC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X=ðn� 1Þ

p �
, respectively, in

which T and X are independent Student’s t and chi-square random variables,

respectively, each with n – 1 degrees of freedom.

Empirical Methods. Representation of U, V, and/or W in measured or

measurable quantities is accomplished by constructing a cumulative distribu-

tion function or frequency histogram for actual or potential measurements that

faithfully reflects associated U, V, and W, respectively. As long as data reflect

a random, representative sample, then empirical statistical methods can be used

directly (e.g., Ang and Tang, 1975; Hahn and Shapiro, 1967). An oft-

encountered challenge arises when measurements from only a population,

species, time frame, or spatial scope, that are slightly or entirely different from

those of interest, are available. For example, exposure-factor measurements

collected on the general population are not representative of deployed military

personnel. A U-, V-, or JUV-distribution fit to measures taken on a broader

population may require adjustment in order to accurately reflect these attributes

in a specific subpopulation. If bias introduced by relying on data pertaining to

a surrogate instead of a target population can be estimated, exposure

characterization for the target population may be based on the best available

data pertaining to the surrogate population (NRC, 2004). Methods based on

expert judgment might be applicable for this purpose. Depending on the

exposure factor under consideration, however, this exercise may be complex,

and perhaps more costly than collecting exposure data for the target population

of interest. Finally, careful characterization of background distributions of

contaminant concentrations, human physiological characteristics, and other

factors that enter an exposure analysis can be important in PEA. For example,

when risk calculations involve nonlinear dose-response models, high-

background levels modeled by the upper tails of such distributions may

effectively define the ‘‘most susceptible’’ subpopulations.

For many quantities of interest, there may no relevant population of trials of

similar events upon which to perform frequentist statistical inference (Morgan

and Henrion, 1990). For example, some events may be unique, or in the future,

for which it is not possible to obtain empirical sample data. Frequentist

statistics are powerful with regard to their domain of applicability, but the

domain of applicability is limited compared with the needs of analysts

attempting to perform studies relevant to the needs of decision makers.

Judgment-Based Methods (e.g., Heuristics, Biases, Elicitation). An

alternative to the frequentist approach to statistics is based on the use of

probability to quantify the state of knowledge (or ignorance) regarding

a particular value. This view is known as the personalist, subjectivist, or

Bayesian view (Morgan and Henrion, 1990). Unlike a frequentist approach,

a Bayesian approach does not require assumptions about repeated trials in order

to make inferences regarding sampling distributions of statistical estimates

(Warren-Hicks and Butcher, 1996). Bayesian methods for statistical inference

are based on sample information (e.g., empirical data, when available) and prior

information. A prior is a quantitative statement of the degree of certainty with

which a person believes that a particular outcome will occur. Because the prior

distribution expresses the state of knowledge of a particular expert (or group of

experts), this distribution is conditional upon the state of knowledge. Methods

for eliciting subjective probability distributions, such as the Stanford/SRI
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protocol, are intended to produce estimates that accurately reflect the true state

of knowledge, free of significant cognitive and motivational biases. Such biases

can arise from prevalent propensities to apply simplifying heuristics when

people (including experts) make judgments about uncertainty. Elicitation

protocols most effectively counteract bias introduced by such heuristics when

they involve very careful elicitation of expert exposure characterization

judgments in probabilistic form, and when they adjust for intraexpert

correlation concerning the statistical significance of assessed characteristics

(Walker et al., 2003).

Although the Bayesian approach explicitly acknowledges the role of

judgment, the frequentist approach also involves judgment regarding the

assumption of a random, representative sample, selection of probability models,

evaluation of models using specific goodness-of-fit or diagnostic checks, and

other steps in analysis (e.g., Cullen and Frey, 1999). Thus, in a broad sense, all

methods for statistical inference require significant judgment on the part of

analysts or experts.

Methods based on Underlying Mechanisms. For some uncertain and

variable quantities that support exposure modeling, underlying biological,

chemical, physical, demographic, economic, and other mechanisms influence

the probability associated with specific ranges of values. The literature is rich

with presentations of the theoretical bases for individual distributional families

and forms (e.g., Bartell and Wittrup, 1996; Brainard and Burmaster, 1992;

Cullen, 1995; Enfield and Cid, 1991; Hattis and Burmaster, 1994; Israeli and

Nelson, 1992; McKone and Ryan, 1989; Morgan and Henrion, 1990; Ott, 1995;

Rubin et al., 1992; Seinfeld, 1986; Thompson et al., 1992). An understanding

of the identifiable underlying processes may allow an analyst to select

a distributional form to represent a quantity, such as dilution processes leading

to a lognormally distributed environmental concentration (Aitchison and

Brown, 1957; Ott, 1990). Once a distributional family is selected, the focus

shifts to establishing the defining parameters of the distribution using any

available data. Of course, there may be multiple distributional forms for which

plausible justifications exist—based on either underlying mechanisms or

measurements. The ultimate purpose of the analysis, and the role of specific

quantities within the analysis, should always guide the process of distilling

distributions from available information and developing representations for

unknown quantities.

Approaches used to reflect temporal variability (W) in exposure should be

selected with recognition that different, complex, or higher-order aspects of

temporal variability in exposure that may not typically be characterized in detail

nevertheless may be critical when exposure is used, explicitly or implicitly, as

input to dose-response models that are sensitive to such temporal variation. For

example, statistics concerning the interval between exposure events may be

important when modeling endpoints such as asthma or acetylcholinesterase

(AChE) inhibition, which may be influenced by long-term exposure history in

a complex way. Another example arises when it may be important to model

substantial concentration fluctuation (i.e., temporal variability W) that occurs

over biologically relevant time periods, because for example, acute chemical

toxicity that may arise in relevant exposure scenarios is better predicted by peak

exposure levels than by mean exposure levels to specific chemicals of concern

(see Introductory section).

Propagating variability and uncertainty through models. This section

briefly describes typical approaches for propagating variability and uncertainty

through models based on specification of variability and uncertainty in the

inputs to the model. At this point of an analysis, typically the scenario has been

specified and models have been selected. Model uncertainties might be

incorporated into the analysis in the form of residual distributions that could

attempt to quantify the precision and accuracy of the model prediction.

Analytical Solutions and Approximations. For simple additive or

multiplicative models, exact solutions can be obtained under specific

conditions (such as input variables all normally or lognormally distributed

with known covariance) using analytical methods for propagating the mean

and covariance of model inputs through the model, to predict the mean and

variance of the output of interest (e.g., DeGroot, 1986; Wilson and Crouch,

1981). For example, the product of lognormal distributions is itself

a lognormal distribution. This result can be obtained based on the central

limit theorem or based on the transformation-of-variables method (e.g., Hahn

and Shapiro, 1967). However, for situations in which the model is more

complex, or in which the input assumptions do not conform to requirements

for obtaining an exact solution for the output, approximation methods based

on Taylor series expansions can be used. These methods are often referred to

as ‘‘error propagation,’’ ‘‘first-order methods,’’ or ‘‘generation of system

moments’’ methods. The purpose of such methods is to estimate the mean,

variance, and perhaps higher moments of a model output. Moment

information can be used to estimate probability distribution parameters, as

well as to identify distributional forms that are consistent with the data

analyzed, any one of which (conditional on corresponding moment-based

parameter estimates) allows estimation of model-output percentiles of

interest. For example, a skewed (e.g., lognormal) distribution would not be

appropriate to use to model the univariate distribution of data exhibiting

a skewness coefficient (i.e., normalized third central moment) equal to zero. A

key limitation of moment-based methods is that they require the model

function be differentiable (e.g., involve no Min, Max, or conditional

operations). These methods typically require that the second (and potentially

higher) derivatives of the model be evaluated. To reduce computational

requirements, it is sometimes possible to ignore higher-order terms, but to do

so introduces inaccuracies. Information explicitly defining the tails of the

input distributions is not propagated. In applications where the shape of the

tails is critical, this limitation can be problematic but may generally be

addressed by applying methods developed specifically to model extreme

values (Coles, 2001; Coles and Pericchi, 2003). With increased application of

Monte Carlo methods made feasible by wider access to computational power,

analytical solutions and approximations are less frequently pursued, and are

nearly obsolete in quantitative exposure analysis today.

Numerical Methods. Numerical methods for propagating distributions

through models are used widely because they are flexible. The Monte Carlo

method involves sampling input values selected at random from each

distribution used to model an input variable, calculating the result of the

output function of each sampled set of input variables (Cohen et al., 1994;

Cullen and Frey, 1999; Davison and Hinkley, 1997; Efron and Tibshirani,

1993; Metropolis and Ulam, 1949; Morgan and Henrion, 1990). For models

that involve linear or monotonically nonlinear relationships between inputs and

outputs, a stratified sampling technique known as Latin Hypercube Sampling

(LHS) (Iman et al., 1980; McKay et al., 1979; Morgan and Henrion, 1990)

provides output distributions, including distributions with user-specified target

rank-correlations (Iman and Connover, 1982), similar to those obtained by

Monte Carlo sampling but with considerably fewer model evaluations. LHS is

carried out by dividing each statistical distribution into segments of equal

probability (i.e., with equal area under a probability density function). For each

distribution, the standard LHS approach is to sample each segment randomly

without replacement, at a random point within that segment, to obtain good

coverage of the entire range of potential values. A simpler, ‘‘systematic’’ LHS

strategy uses only the average or median value of each segment rather than

random samples within each segment, but uses a much larger total number of

segments, to obtain good coverage. By using only predefined sample values for

each (including each continuous) distribution, the systematic LHS approach can

save time; although a drawback of this approach is that exact individual output

values generated in different simulations may (unrealistically) recur, such

recurrance is rarely relevant to PEA or PRA applications.

LHS sometimes does not outperform Monte Carlo sampling for models with

input-output relationships that are non-additive and nonmonotonically non-

linear (Homma and Saltelli, 1995; Saltelli et al., 2000). Quasi-Monte Carlo

sampling procedures (Bratley and Fox, 1988; Saltelli et al., 2000), such as

Sobol’s LPs sampling (Saltelli et al., 2000; Sobol, 1967) and the winding stairs

method (Jansen et al., 1994; Saltelli et al., 2000), might be considered in such

situations. For example, Sobol’s LPs sampling method is based on more fully

satisfying uniformity properties in a multidimensional samping space. These

procedures have not yet been widely used by the environmental community,
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which has instead tended to use Monte Carlo sampling and LHS, and their

practicality remains to be explored.

In contrast with the probabilistic basis of sampling in Monte Carlo and

Latin Hypercube analyses, importance sampling targets specific events and/or

scenarios. Input values related to these critical events and scenarios are

sampled disproportionately in the analysis, with the goal of generating output

information in proportion to its importance (Morgan and Henrion, 1990).

The Fourier Amplitude Sensitivity Test (FAST) (Cukier et al., 1973; Saltelli

et al., 2000) can be used to propagate probability distributions through a model

and to generate a sensitivity analysis that quantifies the main and total

contributions of each input to the variance of the output (e.g., Mokhtari and Frey,

2005; Patil and Frey, 2004). However, FAST has some practical limitations

regarding the number and type of input distributions that can be accommodated.

Sensitivity analysis. Risk assessment models can be large and complex.

Thus, it can be difficult to prioritize controllable variables that are most

promising with respect to risk management goals. As a matter of good practice,

it is important to evaluate how a model responds to changes in its inputs as part

of the process of model development, verification, and validation. Moreover,

insight regarding key sources of uncertainty in a model can be used to prioritize

additional data collection or research to reduce uncertainty. Sensitivity analysis

is a practical tool that helps with all of these policy and modeling needs.

The most commonly used sensitivity analysis methods are those that are

built-in features of widely used software tools, such as applying sample or rank

correlation coefficients in software packages such as SAS, Crystal Ball, @Risk,

or Mathematica. However, many other methods can be used for sensitivity

analysis, such as sample regression, rank regression, ANOVA, categorical and

regression trees, FAST, Sobol’s method, mutual information index, and others.

Some methods can quantify the contribution of each input to the linear or

nonlinear response of a model output, or to the variance of the output, or to

outcomes of the output above a threshold of interest (e.g., high exposure or

risk). Saltelli et al. (2000), Frey and Patil (2002), Frey et al. (2003b), and

Mokhtari et al. (2006) provide a detailed overview and evaluation of selected

methods. Mokhtari and Frey (2005) provide guidance to practitioners regarding

how to select and apply sensitivity analysis for risk assessment modeling.

Iterative tiers of analysis. Modeling is a process of generating insight, and

the amount of learning and insight typically improves as one explores more

deeply the system of interest, the models, and the inputs used to represent the

system (Fig. 2). Thus, as one gains experience with the case study and analysis,

opportunities to improve the analysis, or to target resources to the parts of the

analysis that matter the most, are typically uncovered. Nearly all guidance

documents and handbooks on probabilistic analysis emphasize the importance

of an iterative approach to analysis (e.g., Cullen and Frey, 1999; Morgan and

Henrion, 1990; USEPA, 1997b; WHO, 2008).

The iterative approach has at least two major considerations: (1) the level of

detail, or tier, should be appropriate to the data quality objectives and

significance of the analysis to a decision problem; and (2) the analysis should

be repeated, with the first iteration intended to determine which components or

inputs are most important, and later iterations intended to allow for

improvement of those components and inputs and refinement of the results.

For example, screening analysis, worst-case bounding analysis, comparison of

plausible upper and lower bounds, development of best estimates of

interindividual variability, and so on are different modeling objectives that,

in turn, imply the need for different tiers of analysis. For any given tier, some

degree of iteration can be used to prioritize resources, to preferentially obtain

the best possible information for those parts of the analysis that matter the most.

In practice, it can be difficult to achieve the ideal for tiers of analysis and

iteration, given resource constraints or perceptions that resources do not allow

for iteration. Nonetheless, as a matter of good practice, the selection of an

appropriate tier (level of detail) and number of iterations is a desirable goal for

any analysis. In the long run, a tiered approach to analysis can conserve

resources by focusing them on aspects of the analysis that matter the most.

Alternative or complementary techniques. Although numerical methods

such as Monte Carlo simulation, and empirical and judgment-based approaches

for quantifying variability and uncertainty in model inputs in the form of

probability distributions, appear to be the most widely applied for purposes of

dealing with variability and uncertainty in risk assessment, other techniques can

be considered and applied as appropriate for dealing with uncertain or

imprecise information. Examples of these include interval methods, probability

bounds, fuzzy methods, meta-analytical methods, and artificial intelligence.

Interval methods involve specifying a range for each input, without making

any additional assumptions regarding the relative likelihood of a value falling

within a range, or regarding the type of dependencies that may exist between

two or more inputs (Ferson, 1996). In a technique referred to as p-bounds,

interval methods can be extended to incorporate probabilistic information about

some inputs, and interval information regarding others, while also taking into

account all possible dependencies that could exist among the inputs.

Fuzzy methods are intended to deal with situations in which there is

‘‘vagueness’’ but not necessarily statistical uncertainty (Zadeh, 1965). For

example, one can deal with vagueness as to whether an individual is a member

of a particular group. Although fuzzy methods have found applications in areas

such as process control, they are not widely used in human health risk

assessment.

Meta-analysis is a technique for quantitatively combining, synthesizing, and

summarizing data and results from different studies (Hasselblad, 1995; Putzrath

and Ginevan, 1991). A ‘‘best estimate’’ with more confidence can be produced

on the basis of summarizing or combining results from different studies,

thereby reducing the level of uncertainty compared with that based on any

individual study. Meta-analysis is useful, for example, when there are several

competing studies regarding dietary patterns, epidemiology, or dose-response

effects.

The field of artificial intelligence has produced tools for representing and

exploring uncertainty in inputs, models, and the processes by which these

interact to yield risk estimates. One tool with great potential for application in

the field of risk analysis is the Bayesian Belief Network (BBN) (Pourret et al.,
2008). The BBN refers to an influence diagram that graphically represents

complex and interlocking relationships among model inputs and outputs.

Bidirectional conditionality of probabilities at each node is included explicitly

in the network structure. Probabilities in the network can be updated using

Bayes’ rule, as new information is introduced.

Modeling exposure and risk using simulation models. Under the

framework presented in Figure 1, exposure assessment is the link between

source and PBPK modeling of internal dose and ultimately risk of adverse

effects. Increasingly, risk assessors are attempting to construct models that

simulate the entire source to response continuum (USEPA, 2005b). A hallmark

of these models is that they begin with the definition of the exposed person and

place the definition of the person at the center of the model. This process is

repeated for other individuals to build up a description of a population (Burke

et al., 2001; Price and Chaisson, 2005). There are several reasons for this focus

on the person. First, Exposure models represent a breakpoint in modeling

domains across the source-to-outcome continuum. Prior to exposure modeling,

the process deals with chemicals being released to the environment and moving

through various environmental compartments (e.g., fugacity models). After

exposure assessment, the scope of the modeling covers absorption, distribution,

metabolism, and excretion (ADME) in the human body and ultimately the

health outcome of the individual. To correctly link these disparate domains it is

critical to both define the person’s location over time and behaviors that define

their interaction with one or more sources and to define the same person’s

internal characteristics that define the kinetics, metabolism, and any resulting

effects (Price et al., 2004).

To correctly model variation in health outcomes across a population (V), the

definition of the individual must be consistent among the exposure, PBPK, and

BBDR models. If the use of a product is limited to the elderly, while the

physiology used in the PBPK modeling is taken from young adults, and the

dose-response model is developed for a child, the resulting outcome predictions

will have little value. Different, complex, or higher-order aspects (i.e., not

typically characterized details) of temporal variability in exposure may be

critical in certain dose-response contexts, such as time between exposure events
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(in the context of asthma) or AChE depression, that may integrate long-term

exposure history in a complex way (see section ‘‘Methods based on Underlying

Mechanisms’’).

Person-oriented models achieve this consistency by defining simulated

persons in terms of basic characteristics (demographics) such as age, sex,

region where the individual lives, and season of the year when the person

interacts with sources. These data are then used to define the probability of

interacting with a specific source and the intensity of that interaction. Models of

such time- and route-specific estimates of exposure have been developed to

meet the needs of the Food Quality Protection Act and the Clean Air Act

(Barraj et al., 2000; International Life Sciences Institute [ILSI], 2008; Lifeline

Group, Inc. [LifeLine], 2007; USEPA, 2002, 2007). These models also assess

exposures that occur by multiple routes and multiple sources (aggregate

exposure models). Several models also consider individual activity patterns and

their influence on exposure factors such as breathing rates and dermal transfer

rates. These data can be passed on to uptake models to produce individually

tailored estimates of absorbed dose.

These models provide output in the form of longitudinal exposure histories

that define a population of simulated individuals. Each individual’s exposure

history consists of a series of time steps, the durations of which vary from

model to model and can range in length from a few seconds to a year. The

models define the dose that an individual receives and the route by which the

dose occurs for each time step. These exposure histories (reflecting temporal,

or W-type, variability) take place inside a common temporal framework that

includes secular trends, such as the long-term decline in sources of lead in the

environment, and cyclical changes such as seasonal or weekly chances in

human behavior and the environmental factors that influence exposure (Price

and Chaisson, 2005). The models define exposures that each individual incurs

together with the route(s) by which they occur at each time step, and

differences in these modeled exposures are reflected by differences (V)

between the various exposure histories. Additional models can also model

corresponding sources of uncertainty (U). Thus, the models can be viewed as

joint uncertainty, interindividual variability, and intraindividual variability

(JUVW) models.

The definition of the person in the exposure modes can be passed on to the

PBPK models to provide a basis for defining the physiological characteristics of

the exposed individual (Price and Chaisson, 2005; Price et al., 2003, 2004). By

defining the individual’s basic demographic information (age, sex, ethnicity,

etc.) the exposure models provide a basis for assigning characteristics in an

internally consistent fashion. For example, height and weight can be assigned

based on age and gender. Resting breathing rates and cardiac output can then be

modeled based on height, weight, age, and sex (de Simone et al., 1997; Layton,

1993).

This use of contingent relationships between demographics and physiology

allows the modeling of temporal variation in physiology (W). By assigning an

individual an initial age and height and then modeling the individual over time

the height of the individual as they age can be correctly modeled (each year’s

height a function of the pervious year’s height and the age-specific rates of

growth). The new height each year can then be used to update the breathing

rates and cardiac output.

Finally, the emphasis on the person provides a basis for capturing the age,

sex, and genetic components of the variation in ADME kinetics of substances.

By assigning each individual demographic characteristics, the model can use

information on the frequency of polymorphisms in populations of different

ethnicities to define the probability of a person having an unusual sensitivity to

a chemical.

Decision context of uncertainty and sensitivity analysis. Decision

analysis is a quantitative framework for assisting decision makers with the

process of making a decision, based on principles of rationality (e.g., Watson

and Buede, 1987). Decision making typically must contend with several key

factors, including: (1) multiple, conflicting objectives; (2) uncertainty; and (3)

preferences of a decision maker. In addition, decision analysis provides

a theoretical foundation for estimating the value of collecting more information

to reduce uncertainty (Evans, 1985; Evans et al., 1988; Finkel and Evans, 1987;

Henrion, 1982; Lave et al., 1988; Taylor et al., 1993). Thus, the results of

uncertainty and sensitivity analysis can be used as input to a formal decision-

making process that could be conducted quantitatively. However, in practice, it

is more likely that the quantitative outputs of probabilistic and sensitivity

analyses are used as part of a semiquantitative or qualitative decision-making

process. Nonetheless, the concepts of multi-attribute decision making and value

of information can be used to describe a decision-making process and the types

of outcomes that it can produce.

Exposure assessment has usually included modeling the sources of

exposure, as well as modeling the actual interaction of a person and a substance.

With very few exceptions (e.g., being struck by a meteor), human activity

influences either the release of or the exposure to a source. For example, an

exposure assessment may begin with the release of a substance at a smoke

stack, model the transport to a residence, and then evaluate the inhalation of the

substance in an indoor environment. Thus, the problem that risk assessment

ultimately tries to address is how decisions concerning a source (e.g.,

permitting an environmental release, banning fishing in a river, or approving

the sale of a product) will affect the health outcomes in a population.

Often, the behavior of the exposed individual affects the source (use of

consumer products, choice of transportation, etc.). Where the behavior of the

exposed individual is independent of the source (people breathe at the same rate

whether or not there is an upwind incinerator), there is a need to connect the

exposure assessment to source modeling (e.g., decisions concerning the

incinerator may imply imposition of competing risks from alternative waste/

landfill management methods). A basis for such a connection is to construct

a temporally and spatially defined framework that includes both the source

modeling and the exposed individual, as has been done to quantify variability

and uncertainty in air pollutant emissions and other discharges to the

environment (e.g., Frey and Zhao, 2004; North American Consortium for

Atmospheric Research in Support of Air-Quality Management [NARSTO],

2005). Such a framework should identify common pathways, routes of

exposure, and potential dose, in a transparent fashion that is useful to

toxicological/health-effects assessment.

Ecological risk assessors have developed approaches that are parallel to the

person-oriented modeling described above. In these ecological models, species

living in a specific environment (fish in a specific river, or birds along a specific

portion of shoreline) are modeled by simulating individual animals over time

and their ability to survive and reproduce in the face of chemical stressors. The

cumulative success of the simulated animals is used to predict whether

populations of such species exposed to specific stressors will increase or

decline over time. In both human and ecological models of exposure,

a temporal framework that addresses seasonal and other cyclical patterns is

established. The framework allows the models to represent temporal and spatial

variation of stressor exposures and simulates longitudinal exposures of

individual human or nonhuman animals over time.

CONCLUSIONS

The state of PEA science was reviewed with reference to

experience gained in assessment of human exposures to

chemicals in the environment and to key PEA applications

and associated design and information needs. A key observa-

tion made is that PEA objectives are shaped by the four

primary decision-making contexts in which exposure informa-

tion is used to characterize environmental toxicity risks:

protection of public health, environmental health triage, civil

justice, and criminal justice. Although information needs differ

for these different risk management contexts, and although

related methodological improvements continue to be made,

existing PRA techniques can be applied to implement PEA to

support each area of decision making.
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Key barriers, as well as opportunities, exist for improved

PEA. Exposure assessments are performed independently by

practitioners in diverse fields (industrial hygiene, nuclear

power, consumer products, air and water pollution programs,

foods, agricultural chemicals, and building design, among

others). Different government agencies that deal with these

various problem domains typically are the primary sponsors of

exposure assessments. Various professional societies as well as

regulatory agencies deal with exposure assessment (AIHA,

International Society for Exposure Sciences, the Health Physics

Society, the Society for Risk Analysis, USEPA, the U.S.

Occupational Health and Safety Administration, state environ-

mental protection and occupational health and safety agencies,

etc.). Each of the various communities has a unique set of

perspectives, historical practices, terminologies, resources, and

propensities, governed by overlapping set(s) of problems and

decision-making goals, regulatory requirements, and legislative

mandates being addressed, directly or indirectly, by these

interrelated communities.

Different communities may not be fully aware of the state of

best practice in other communities, leading to missed

opportunities to more rapidly adopt successful approaches.

PEA can thus be made more effective by actions to improve

the characterization of variability and uncertainty in sources;

expand interdisciplinary approaches that link with other aspects

of chemical risk assessment, including decision context and

dose-response assessment; increase the application of iterative

analyses proportionate to and at a level of sophistication

warranted by the characteristics of the decision under con-

sideration; integrate the ability of PEA to reflect recent advances

in toxicology, genomics, and PBPK modeling—all facilitated by

improved training of exposure analysts, and more rigorous and

systematic peer review of PEA projects to foster their credibility

and the general advancement of the state of PEA practice.
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