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Although microarray technology has emerged as a powerful

tool to explore expression levels of thousands of genes or even

complete genomes after exposure to toxicants, the functional

interpretation of microarray data sets still represents a time-

consuming and challenging task. Gene ontology (GO) and

pathway mapping have both been shown to be powerful ap-

proaches to generate a global view of biological processes and

cellular components impacted by toxicants. However, current

methods only allow for comparisons across two experimental

settings at one particular time point. In addition, the resulting

annotations are presented in extensive gene lists with minimal

or limited quantitative information, data that are crucial in

the application of toxicogenomic data for risk assessment. To

facilitate quantitative interpretation of dose- or time-dependent

genomic data, we propose to use combined average raw gene

expression values (e.g., intensity or ratio) of genes associated with

specific functional categories derived from the GO database. We

developed an extended program (GO-Quant) to extract quantita-

tive gene expression values and to calculate the average intensity

or ratio for those significantly altered by functional gene category

based on MAPPFinder results. To demonstrate its application, we

applied this approach to a previously published dose- and time-

dependent toxicogenomic data set (J. F. Dillman et al., 2005,

Chem. Res. Toxicol. 18, 28–34). Our results indicate that the above
systems approach can describe quantitatively the degree to which

functional gene systems change across dose or time. Additionally,

this approach provides a robust measurement to illustrate results

compared to single-gene assessments and enables the user to calcu-

late the corresponding ED50 for each specific functional GO term,

important for risk assessment.
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quantitative.

Microarray technology has become a powerful tool to
explore the expression levels of thousands of genes or even
complete genomes after exposure to toxicants. A major
challenge in the interpretation of toxicogenomic data is the
functional interpretation, linking potentially interrelated alter-
ations in gene expression to conventional toxicological end
points (Hamadeh et al., 2002; Moggs, 2005). The functional
interpretation of microarray data sets represents a laborious and
challenging task. Researchers gather annotations from data-
bases and identify characteristics of extracted sets of genes.
The Gene Ontology (GO) Consortium initiated the standard-
ization of annotation terms making them applicable for
different organisms, facilitating data exchange among labora-
tories and databases (Ashburner et al., 2000; Camon et al.,
2004; Harris et al., 2004). These characteristics render GO
annotations a powerful tool for the interpretation of microarray
data. The ability to determine which GO terms apply or which
biological pathways are associated with each differentially
expressed gene from a microarray experiment provides an ideal
model to gain an understanding of what molecular processes
are affected by the observed changes in gene expression.
Recently, many groups have developed methods and tools for
pathway analysis that are compatible with GO mapping and
reveal statistically significant annotations associated with
microarray data (Al-Shahrour et al., 2004; Beissbarth and
Speed, 2004; Dennis et al., 2003; Doniger et al., 2003). The
combination of using GO and pathway mapping has been
proposed as a powerful approach to generate an unbiased view
of biological processes and cellular components that are reg-
ulated by toxicant exposure at the transcriptional level (Currie
et al., 2005). In general, these methods are based on a two-step
process. First, a list of significantly altered genes is compiled
based on statistical analysis (e.g., ANOVA). Second, annota-
tion terms that are significantly over- or underrepresented
within this list based on criteria such as fold change or
statistical p value are compared to a reference list that usually
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consists of all genes on the array. An excellent example of the
application of this approach for the analysis of di(2-ethyl-
hexyl)phthalate exposure is given (Currie et al., 2005). How-
ever, these current methods only allow for a comparison of
two experimental settings at a time and/or are restricted to one of
the main GO categories or to a specific GO level. Furthermore,
the resulting annotations are presented in extensive gene lists
lacking quantitative information on each regulated gene. This
one-dimensional analysis does not allow for quantitative or
qualitative evaluation of possible dose- or time-dependent
genomic relationships, which is crucial for the application of
toxicogenomic data in the field of risk assessment.
An approach using the data average from many different

genes categorized into broad ‘‘omic categories’’ has been
proposed (Jansen and Gerstein, 2000). However, there is no
consensus about the omic categories, and no systemic approach
has been proposed to identify and calculate the average data.
Since then, there has been a rapid development of the GO
project, a collaborative effort to address the need for consistent
descriptions of gene products in different databases (Ashburner
et al., 2000; Camon et al., 2004; Harris et al., 2004). The GO
collaborators are developing structured, controlled vocabularies
(ontologies) that describe gene products in terms of their as-
sociated biological processes, cellular components, and molec-
ular functions in a species-independent manner. The use of GO
terms by several collaborating databases facilitates uniform
queries across them. The Gene Ontology identifier (GOID) for
the term seems to be a perfect candidate for the proposed omic
categories. Computer programs such as MAPPFinder are avail-
able to link gene expression data to the GO hierarchy and to
statistically identify the GO terms altered by toxicant exposure
(Doniger et al., 2003). To facilitate quantitative interpretation of
dose- or time-dependent genomic data, we propose a system-
based approach to integrate the raw gene expression data
with the GO Ontological analysis. We developed a computer
program called GO-Quant that automatically links functional
gene category analysis result from MAPPFinder with the
original gene expression data and calculates the average
intensity or ratio for those significant genes within each GO
term. We applied this approach to demonstrate its application
in a published dose- and time-dependent toxicogenomic data
set (Dillman et al., 2005). Our results indicate that the above
systematic approach can describe quantitatively the degree to
which functional gene systems change across dose or time
course. Additionally, this approach provides a global measure-
ment to illustrate our results compared to single-gene assess-
ments and enables the user to calculate the corresponding ED50

for each specific functional GO term.

SYSTEMS AND METHODS

Gene expression data set. In this paper, dose and temporal genomic data

were obtained from Dillman et al. (2005). The complete raw data set was

retrieved from NCBI’s gene expression omnibus (GEO, http://www.ncbi.nlm.

nih.gov/geo/) through GEO Series accession number GDS 1027. As described

in the study of Dillman et al. (2005), rats were injected in the femoral vein with

liquid bis(2-chloroethyl)sulfide (sulfur mustard, SM), which circulates directly

to the pulmonary vein and then to the lung. Rats were exposed to saline,

isopropyl alcohol (vehicle control), 1, 3, or 6 mg/kg of SM in vehicle (isopropyl

alcohol) and lungs harvested at 0.5, 1, 3, 6, and 24 h postinjection. Three

biological replicates were used for each time point and dose tested.

Physiological saline administrated in a similar manner was also included as

an additional control. RNAwas extracted from the lungs and used as the starting

material for the probing of replicate oligonucleotide microarrays. All experi-

ments were performed using Affymetrix Rat RAE230A oligonucleotide arrays

(Affymetrix, Santa Clara, CA).

Statistical analysis and comparisons. Raw gene expression data were

imported to BRB Array Tools v3.3 for statistical analysis (Wright and Simon,

2003). A log2 transformation was applied to the data set. Each array was

normalized by using the median intensity over the entire set of arrays. Since in

this paper we are demonstrating our system approach by applying it to dose or

time course microarray data, we conducted one-way ANOVAs across doses or

time points. Statistical comparisons were conducted across doses (vehicle

control, 1, 3, or 6 mg/kg) for each time point (0.5, 1, 3, 6, and 24 h) or across

time points for each dose by using the ‘‘randomized variance’’ F test (Long

et al., 2001; Wright and Simon, 2003). Significantly changed genes across

doses (dose response) at specific time points (6 and 24 h) were selected based

on one-way ANOVA test at p < 0.005 while significantly changed genes across

time points (time course) at a dose of 6 mg/kg were selected based on one-way

ANOVA test at p < 0.001 since there was a large number of genes changed with

time. Hierarchical clustering analysis of functional gene category based on

MAPPFinder results was performed across doses at two time points (6 and 24 h)

or across time points at a dose of 6 mg/kg for the significantly changed genes.

For the selected significant genes, ratios were derived by dividing each

normalized gene value by the average value of the controls (vehicle) and then

transforming the ratios to their respective log2 ratios. These log2-transformed

ratios were used as input for the TIGR Multiexperiment Viewer (MEV) (Saeed

et al., 2003). Hierarchical clustering analysis was conducted on the output

genes using average linkage and Euclidean dissimilarity methods (Eisen et al.,

1998). The complete output of the cluster analysis is shown with the fold

change indicated colorimetrically.

GO analysis. To establish associations between treatment and the affected

GO terms and pathways, we used MAPPFinder (http://www.GenMapp.org)

(Doniger et al., 2003), which links gene expression data to the GO hierarchy

(Ashburner et al., 2000; Camon et al., 2004; Harris et al., 2004). MAPPFinder

calculates a Z score as well as a permutation test p value for the genes that are

significantly altered across doses (p � 0.005) at 6 or 24 h or across time points

(p � 0.001) at a dose of 6 mg/kg doses. Since we proposed to use combined

average raw gene expression values (e.g., intensity or ratio) of genes associated

with specific functional gene categories derived from the MAPPFinder results

and there are two directions of gene expression changes at a certain dose (or

time), either upregulation or downregulation within a specific gene category,

the average of these two different directions of gene expression alteration will

mask the degree of changes. Therefore, the upregulated or downregulated genes

will be calculated separately in the MAPPFinder. In this study we found simple

patterns of expression of a consistent upregulation or consistent downregulation

across dose and time based on K-means cluster analysis (Soukas et al., 2000).

K-means cluster analysis was used to group individual genes across doses (or

times) into two groups classified as up- or downexpression based on the trend

with dose (or time) of the mean expression pattern. The number of clusters used

in our analysis was chosen based upon having the mean expression patterns

against dose (or time), and this assumption of using only two clusters was tested

by examining using more than two clusters. To test the robustness of this

method, we compared the K-means cluster analysis with a manual analysis of

the trend. In the manual analysis of trend, we assigned an upregulation trend of

a gene when the gene expression ratio was significantly elevated in at least three

of the four groups or elevated at both SM 3 and 6 mg/kg groups. The trend of

downregulation of a gene across groups was assigned when the gene expression
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level was significantly downregulated in at least three of the four groups or

downregulated at both SM 3.0 and 6 mg/kg groups. The manual analysis of

trend tended to create isolated clusters with few genes and larger clusters poorly

represented by their mean expression patterns.

Each GO node and the cumulative total of the number of genes either

upregulated or downregulated in a parent GO term combined with all its

children were calculated. Z scores, a statistical measure of significance for gene

expression in a given group, were calculated by subtracting the number of genes

expected to be randomly changed in a GO term from the observed number of

changed genes in that GO term. This value was then divided by the SD of the

observed number of genes under a hypergeometric distribution. The equation

can be written out as

Z score¼ðr�nðR=NÞÞ=ððnðR=NÞÞð1�ðR=NÞÞð1�ððn�1Þ=ðN�1ÞÞÞ1=2; ð1Þ
where N is the total number of genes measured, R is the total number of genes

meeting the criterion that the gene be significantly changed based on an F test at

significant p value, n is the total number of genes in each specific GO term, and

r is the number of genes meeting the criterion in this specific GO term. A

positive Z score indicates that there are more genes meeting the criterion in

a GO term than would be expected by random chance. If the MAPPFinder data

truly obeyed the assumptions of the hypergeometric distribution, then a Z score

of 1.96 or �1.96 would correlate with a p value of 0.05. In order to address the

multiple testing that occurs in GO database in using Z score, a nonparametric

permutation test of the data was calculated (see Doniger et al., 2003, for more

detail). This Z score allows us to rank and describe alterations in gene

expression by each GO term based on the relative amount of altered gene

expression within each category. For a GO term to be included in Tables 2–4,

we set that at least three genes changed significantly (nested results) and that the

permutation p value � 0.05.

Quantitative integration of GO analysis to evaluate dose- or time-

dependent genomic data. MAPPFinder links gene expression data to the

GO hierarchy and statistically identifies the GO term altered by the toxicant

exposure (Doniger et al., 2003). Selecting genes for each category based on the

arbitrary cutoff of fold change or p value change does not take into account the

magnitude of the fold change of each gene, which is critical in the evaluation of

dose- or time-dependent genomic data. To facilitate quantitative interpretation

of dose- or time-dependent genomic data, we propose a system-based approach

to integrate the raw gene expression data with the results from GO analysis. We

developed a program called GO-Quant which automatically links results from

functional GO analysis (MAPPFinder) with the original gene expression data

and calculates the average intensity or ratio for those significantly genes within

each GO term. For example, the average intensity or ratio of all significantly

changed genes under statistically identified GOID was automatically calculated

for each dose. Within a GOID, both upregulated and downregulated genes exist,

and the calculation of this kind of average can be complicated. Thus, in our

MAPPFinder analysis, the upregulated and downregulated genes were analyzed

separately, and the average of intensity or ratio within a GOID in the

upregulation or downregulation was calculated separately. The output file from

the GO-Quant includes GO term, Z score, or average intensity or ratio, as well

as gene ID. In the further analysis, the above output file was imported to MEV

(Saeed et al., 2003) and a hierarchical clustering analysis on each GO term

conducted using average linkage and Euclidean dissimilarity methods (Eisen

et al., 1998). This hierarchical clustering analysis allows one to visualize the

quantitative GO results. A stand-alone application for the above calculation

(GO-Quant) is available now from the authors (http://depts.washington.edu/

irarc/Go-Quant/).

RESULTS AND DISCUSSION

Framework for the Quantitative Functional Interpretation
of Dose- and Time-Dependent Genomic Data

As shown in Figure 1, typically three main steps are included
in the framework for the quantitative functional interpretation

of dose- and time-dependent genomic data. The first step is
a traditional microarray analysis, aimed at identifying the
statistically significant genes across dose or time course by
using the ANOVA method. The next step is to identify sig-
nificantly altered functional GO gene categories or pathways
by using unsupervised GO analysis or a pathway-mapping tool
such as MAPPFinder. The last step is to extract the quantitative
gene expression data and calculate the average intensity or ratio
for those genes significantly altered within each functional
gene category based on MAPPFinder by using our GO-Quant
program. In order to demonstrate its power in quantitative
evaluation of dose- and time-dependent microarray data, we
applied this approach to a published dose- and time-dependent
toxicogenomic data set in rats treated with SM.

Table 1 shows the outline of gene alteration across dose and
time. Time course of the total number of significantly changed
genes across doses (0, 1, 3, or 6 mg/kg) for each time point (0.5,
1, 3, 6, and 24 h) by one-way ANOVA comparisons (p �
0.005) is listed at the right side of the table. The number of
significantly changed genes increased in a time-dependent
manner, peaking at 6 h. Dose-dependent increase in the number
of significantly changed genes (p � 0.005) across time points
(0.5, 1, 3, 6, and 24 h) was listed in the left side of the table.
Less than 137 genes changed with isopropyl alcohol across the
time period observed, and more than 2600 genes changed with
a dose of 6 mg/kg of SM.

FIG. 1. System-based schematic framework for the interpretation of dose-

and time-dependent genomic data.
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Dose-Dependent Alteration of Gene Expression after
Injection of SM

Hierarchical clustering analysis. Figure 2 shows the
hierarchical cluster analysis of gene expression alterations
across dose. Significant gene expression changes were seen in
a dose-dependent manner after injections of SM at 6 (A) and
24 h (B). Genes significantly changed across doses (p � 0.005)
at 6 (737 genes) or 24 h (441 genes) after injection were chosen
to conduct the hierarchical clustering analysis. Examples of
dose-dependent changes included downregulation of protein-
tyrosine phosphatase receptor type G and upregulation of
cyclin-dependent kinase inhibitor 1A and cyclin G1 transcrip-
tion after 6 h postinjection (A and B clusters of Fig. 2A).
Additionally, dose-dependent downregulation of T-cell recep-
tor beta-chain and granzyme M and upregulation of cyclin-
dependent kinase inhibitor 1A and cyclin G1 transcription were
observed 24 h postinjection (A and B clusters in Fig. 2B).
However, based solely on the above statistical analysis, it is
difficult to interpret these example changes in gene expression
within a biological context.

GO analysis of SM-induced genes alterations. We used
MAPPFinder to find significant changes within each GO
functional category. MAPPFinder linked the 11,212 probe sets
measured in this experiment to the GO database. A total of
4485 probes were linked to an Ensembl ID and 3144 genes
linked to a GO term in the hierarchy. MAPPFinder calculates
a Z score as well as a permutation test p value for the genes that
are significantly altered across doses (p � 0.005) at 6 or 24 h,
or across time points (p � 0.001) at a dose of 6 mg/kg.
MAPPFinder calculated the percentage of genes meeting the
criteria of either a statistically significant increase or decrease
in gene expression across dose (or time). In addition, a Z score
for each GO term was calculated based on Formula 1 to identify
which GO terms had a significant number of altered genes.
Since there are two directions of gene expression alteration

after treatment at certain a gene category, the separation of the
genes based on their trend (either upregulation or down-
regulation) of average gene expression pattern across dose (or
time) allows to quantitatively evaluate the degree of changes
across dose or time. In this study we identified two simple
patterns of either consistent upregulation or consistent down-
regulation for gene expression across doses (or time) within GO
terms based on K-means cluster analysis. MAPPFinder results
represent a global picture of biological processes, cellular
components, and molecular functions that are significantly
altered (upregulated or downregulated) at the transcriptional
level after treatment (Tables 2 and 3). Significant down-
regulations of genes involved in protein modification (GOID
6464), such as phosphorylation (GOID 6468) and signaling
transduction (GOID 7165, 8277, 7242, 9966, and 9968), were
observed based on biological process gene category 6 h after
SM injection (Table 2). In contrast, significant upregulation of
genes involved in the cell cycle (GOID 7049) was observed
based on biological process gene category 6 h after SM
injection (Table 2). As shown in Table 3, in the biological
process, genes in cell cycle, especially in M phase, such as M
phase of mitotic cell cycle (GOID 87), mitosis (GOID 7067),
cell division (GOID 51301), M phase (GOID 279), and mitotic
cell cycle (GOID 278), were upregulated. Transferase activity
(GOID 16746) was also upregulated. Significant downregula-
tion in immune responses (GOID 6955) such as cell activation
(GOID 1775) and cell adhesion (GOID 7155) was observed.

Consistent with the previously published analysis (Dillman
et al., 2005), we identified alterations in the cell cycle
regulation functional gene category as the most striking
changes resulting from SM exposure. Furthermore, GO
analysis suggests that multiple biological pathways are in-
volved in SM-induced toxic effects. A recent report comparing
global gene expression analyses between laboratories and
across platforms suggested that GO analysis is a more bi-
ologically meaningful and statistically robust approach to data
analysis than relying on single-gene analyses (Bammler et al.,
2005). Our GO analysis demonstrates that unsupervised GO
mapping and subsequent statistical significance analysis con-
stitute a powerful unbiased approach to defining the biological
pathways of known and novel SM-induced molecular changes
in the rat lung. We noticed in MAPPFinder analysis that among
the 11,212 probe sets measured in this experiment, only 4485
probe sets linked to an Ensembl ID and 3144 genes linked to
a GO term. Thus, the biological significance of a large number
of rat genes still needs to be defined. Once the annotation of
these rat genes is completed, GO mapping and subsequent
statistical significance analysis of microarray data will prove to
be a powerful unbiased approach in definingbiological pathways.

Quantitative Integration of GO Analysis to Evaluate
Dose Response

Toxicogenomic data can provide profoundly important and
novel information to the field of risk assessment. However, we

TABLE 1

Dose- and Time-Dependent Gene Alterations after

Injection of SM

Doses

(mg/kg)

Number of genes

changed across time

(p � 0.005) Time (h)

Number of genes

changed across dose

( p � 0.005)

0 137 0.5 49

1 957 1 54

3 570 3 133

6 2604 6 737

24 441

Note. The number of significantly changed genes across doses (isopropyl

alcohol, 1, 3, or 6 mg/kg) for each time point (0.5, 1, 3, 6, and 24 h) or the

number of significantly changed genes across time points (0.5, 1, 3, 6, and

24 h) for each dose (saline, isopropyl alcohol, 1, 3, or 6 mg/kg) was identified

by one-way ANOVA comparisons at p value � 0.005.
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FIG. 2—Continued.
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are currently facing the difficult challenge of how to quanti-
tatively interpret dose- or time-dependent relationships result-
ing from genomic approaches. As presented, the conventional
GO analysis does not provide any quantitative information
about microarray data in a dose-dependent manner, and no
methodology is available to achieve quantitative analysis of
pathway-specific information. Thus, we developed a framework
to evaluate functional genes from microarray data, as illus-
trated in Figure 1, and propose the use of such data within
a statistically significant functional gene category, such as
a specific GO term in the GO database. The above calculation
includes a large number of genes within each functional gene
category, and there is currently no tool available to conduct

such a task. We developed a computer program called GO-
Quant, which automatically links functional GO analysis
results from MAPPFinder with the original microarray data
set, to calculate the average intensity or ratio for those
significant genes within each GO term. Figure 3 shows the
hierarchical cluster analysis of quantitative GO results across
SM treatments after 6 (Fig. 3A) or 24 h (Fig. 3B). Compared to
the conventional qualitative GO analysis shown in Tables 2
and 3, Figure 3 shows the dose-dependent alterations of each
functional gene category (GOID) following SM treatment.
Cell cycle genes (GOID 7049) were dose dependently
upregulated 6 h after SM injection (Fig. 3A), and cell cycle
alterations, especially in M phase pathway genes (GOID 87,

FIG. 2. Hierarchical cluster analysis of dose response gene expression alteration after injection of SM at 6 (A) and 24 h (B). Genes significantly changed across

doses at 6 (717 genes) or 24 h (441 genes) after injection were included in hierarchical clustering analysis using average linkage and Euclidean dissimilarity

methods. Clusters A and B show the details of genes including Affymetrix probe ID and gene name.
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TABLE 2

Statistically Significantly Changed Gene Ontology Terms across Dose at 6 h

GOID Path GO name

Number

changed

Number

measured

Number

in GO Z score Permutation p

UP_REGULATION

Biological process

7049 0.0.2.2.1 Cell cycle 8 116 204 2.8 0.02

74 0.0.2.2.1.6 Regulation of progression through

cell cycle

5 67 114 2.4 0.05

16043 0.0.2.2.7 Cell organization and biogenesis 14 294 689 2.2 0.05

16044 0.0.2.2.7.3 Membrane organization and

biogenesis

3 9 10 5.6 0.00

6457 0.0.2.2.9.9.2.8 Protein folding 5 48 138 3.3 0.01

46394 0.0.2.2.9.21.0.4 Carboxylic acid biosynthesis 3 23 31 3.0 0.02

6633 0.0.2.2.9.21.0.4.1 Fatty acid biosynthesis 3 22 30 3.1 0.02

16053 0.0.2.2.9.21.1 Organic acid biosynthesis 3 23 31 3.0 0.02

51244 0.0.2.2.15 Regulation of cellular

physiological process

23 518 1186 2.6 0.02

6913 0.0.2.2.17.8.8 Nucleocytoplasmic transport 4 23 44 4.3 0.00

6869 0.0.2.2.17.10 Lipid transport 3 21 42 3.2 0.03

15031 0.0.2.2.17.15 Protein transport 9 163 348 2.2 0.04

6605 0.0.2.2.17.15.0.1 Protein targeting 4 32 70 3.4 0.01

50794 0.0.2.4 Regulation of cellular process 23 554 1247 2.2 0.04

43285 0.0.6.6.1.2.0 Biopolymer catabolism 4 41 97 2.8 0.03

30163 0.0.6.6.1.2.0.1 Protein catabolism 4 39 91 2.9 0.02

50791 0.0.6.8 Regulation of physiological process 24 560 1240 2.5 0.03

42221 0.0.9.1.1 Response to chemical stimulus 6 87 130 2.4 0.03

Cellular component

5622 0.1.0.8 Intracellular 48 1348 3755 2.5 0.03

5829 0.1.0.8.2.4 Cytosol 6 85 121 2.5 0.03

15630 0.1.0.8.3.4 Microtubule cytoskeleton 4 45 110 2.5 0.05

43229 0.1.0.8.7 Intracellular organelle 44 1167 3089 2.7 0.01

43231 0.1.0.8.7.1 Intracellular membrane-bound

organelle

42 1017 2426 3.3 0.00

5634 0.1.0.8.7.1.6 Nucleus 27 565 1641 3.3 0.00

43226 0.1.4 Organelle 44 1167 3089 2.7 0.01

43227 0.1.4.1 Membrane-bound organelle 42 1017 2426 3.3 0.00

Molecular function

46914 0.2.1.10.0.2 Transition metal ion binding 16 320 1094 2.6 0.02

5506 0.2.1.10.0.2.3 Iron ion binding 7 109 211 2.4 0.04

51082 0.2.1.22.45 Unfolded protein binding 6 34 94 5.3 0.00

16881 0.2.2.9.1.0 Acid–amino acid ligase activity 4 49 228 2.3 0.04

16705 0.2.2.11.12 Oxidoreductase activity, with

reduction of molecular oxygen

5 52 100 3.1 0.02

DOWN_REGULATION

Biological process

7154 0.0.2.0 Cell communication 48 856 2692 4.3 0.00

7165 0.0.2.0.4 Signal transduction 39 701 2368 3.7 0.00

8277 0.0.2.0.4.0.3.7 Regulation of G-protein–coupled

receptor protein signaling

pathway

3 14 17 3.8 0.01

7242 0.0.2.0.4.1 Intracellular signaling cascade 20 246 503 4.3 0.00

9966 0.0.2.0.4.2 Regulation of signal transduction 4 35 57 2.7 0.04

9968 0.0.2.0.4.2.0 Negative regulation of signal

transduction

3 22 32 2.7 0.04

6464 0.0.2.2.9.9.2.9 Protein modification 20 329 960 2.9 0.01

9187 0.0.2.2.9.19.4.0 Cyclic nucleotide metabolism 3 15 23 3.6 0.01

9190 0.0.2.2.9.19.4.0.2 Cyclic nucleotide biosynthesis 3 15 22 3.6 0.01

6468 0.0.2.2.9.24.0.1.3 Protein amino acid

phosphorylation

17 166 407 5.1 0.00

15674 0.0.2.2.17.9.1.0 Di-, trivalent inorganic cation

transport

5 54 88 2.4 0.05
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279, 278, 7067, and 51301), were dose dependently upregu-
lated 24 h after SM injection (Fig. 3B). Dose-dependent
downregulation of protein modification gene pathways, such
as phosphorylation, were observed at the 6 h time point,
while dose-dependent downregulation of immune response
gene pathway (GOID 6952, 1775, and 45321) was observed
at 24 h after SM injection (Fig. 3B). Figures 4 and 5 further

demonstrate the dose response of quantitative gene expres-
sion pathway alterations within each functional gene cate-
gory in biological process (Fig. 4) and molecular function
genes (Fig. 5). Significant upregulation in cell cycle gene
pathways becomes obvious at 3 mg/kg both at 6 (Fig. 4A)
and at 24 h (Fig. 5A) after injection. Our results confirm that
the above system approach is a more robust and clear

TABLE 2—Continued

GOID Path GO name

Number

changed

Number

measured

Number

in GO Z score Permutation p

6897 0.0.2.2.17.18.0 Endocytosis 4 34 44 2.7 0.03

43412 0.0.6.6.3.0.2 Biopolymer modification 20 337 994 2.8 0.02

Molecular function

8289 0.2.1.12 Lipid binding 7 66 116 3.3 0.01

19992 0.2.1.12.0 Diacylglycerol binding 4 16 21 4.8 0.00

166 0.2.1.16 Nucleotide binding 30 454 1252 4.2 0.00

17076 0.2.1.16.2 Purine nucleotide binding 28 420 1145 4.1 0.00

5524 0.2.1.16.2.0.3 ATP binding 23 313 888 4.2 0.00

5515 0.2.1.22 Protein binding 40 731 1482 3.7 0.00

5516 0.2.1.22.6 Calmodulin binding 8 51 69 4.9 0.00

3779 0.2.1.22.14.0 Actin binding 5 48 114 2.7 0.04

5126 0.2.1.22.37.0.4 Hematopoietin/interferon-class

cytokine receptor binding

3 19 32 3.0 0.03

4518 0.2.2.6.4.1 Nuclease activity 4 29 89 3.1 0.02

16740 0.2.2.15 Transferase activity 23 422 1100 2.6 0.02

16772 0.2.2.15.6 Transferase activity, transferring

phosphorus-containing groups

19 262 655 3.7 0.01

16301 0.2.2.15.6.1 Kinase activity 19 239 570 4.1 0.00

4672 0.2.2.15.6.1.17 Protein kinase activity 17 170 419 5.0 0.00

4674 0.2.2.15.6.1.17.4 Protein serine/threonine kinase

activity

14 126 333 4.9 0.00

4683 0.2.2.15.6.1.17.4.1 Calmodulin-regulated protein

kinase activity

3 12 13 4.2 0.01

4702 0.2.2.15.6.1.17.4.9 Receptor-signaling protein

serine/threonine kinase activity

3 20 28 2.9 0.04

4713 0.2.2.15.6.1.17.6 Protein-tyrosine kinase activity 7 67 250 3.3 0.01

16773 0.2.2.15.6.3 Phosphotransferase activity,

alcohol group as acceptor

18 205 497 4.5 0.00

8047 0.2.4.1 Enzyme activator activity 6 37 61 4.4 0.00

5096 0.2.4.1.1 GTPase activator activity 6 24 44 5.9 0.00

30695 0.2.4.3 GTPase regulator activity 9 45 106 6.3 0.00

5083 0.2.4.3.1 Small GTPase regulator activity 4 26 76 3.4 0.01

5085 0.2.4.3.1.2 Guanyl-nucleotide exchange

factor activity

3 20 55 2.9 0.03

16524 0.2.8.1.8.10 Latrotoxin receptor activity 3 5 8 7.0 0.00

5057 0.2.8.3 Receptor-signaling protein activity 4 36 49 2.6 0.05

5262 0.2.12.10.2.2.2 Calcium channel activity 4 29 42 3.1 0.03

5245 0.2.12.10.2.2.2.1 Voltage-gated calcium channel

activity

3 12 18 4.2 0.01

Cellular component

5856 0.1.0.8.3 Cytoskeleton 11 135 337 3.2 0.01

16459 0.1.0.8.3.0.5 Myosin 3 20 39 2.9 0.03

30054 0.1.0.10.8.4 Cell junction 4 29 64 3.1 0.02

Note. MAPPFinder was used to identify the differentially expressed GO terms based on the Z score (� 2) and permutation p value (� 0.05). The GO identify

number (GOID), hierarchical tree (Path), GO term name (GO name), the number of genes changed within each functional gene category, number of genes

measured on the array and number of the genes in the GO database, statistical significance value Z score and permutation p value were listed. GO terms with at

least 3 genes changed and permutation test p value � 0.05 were listed in table.
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TABLE 3

Statistically Significantly Changed GO Terms across Dose at 24 h

GOID Path GO name

Number

changed

Number

measured

Number

in GO Z score Permutation p

UP_REGULATION

Biological process

279 0.0.2.2.1.3 M phase 3 27 46 2.8 0.03

87 0.0.2.2.1.3.1 M phase of mitotic cell cycle 3 21 36 3.4 0.02

278 0.0.2.2.1.5 Mitotic cell cycle 3 26 44 2.9 0.02

51301 0.0.2.2.3 Cell division 3 28 52 2.8 0.03

46164 0.0.2.2.9.0.1 Alcohol catabolism 3 25 72 3.0 0.05

46365 0.0.2.2.9.0.1.0 Monosaccharide catabolism 3 24 68 3.1 0.04

19320 0.0.2.2.9.0.1.0.0 Hexose catabolism 3 24 68 3.1 0.04

6007 0.0.2.2.9.0.1.0.0.0 Glucose catabolism 3 23 67 3.2 0.04

6096 0.0.2.2.9.0.1.0.0.0.0 Glycolysis 3 21 61 3.4 0.02

44275 0.0.2.2.9.7.5.0 Cellular carbohydrate catabolism 3 28 79 2.8 0.05

51186 0.0.2.2.9.10 Cofactor metabolism 4 49 117 2.5 0.04

6351 0.0.2.2.9.19.9.1 Transcription, DNA dependent 14 300 799 2.5 0.04

6790 0.0.2.2.9.27 Sulfur metabolism 3 11 16 5.2 0.01

51244 0.0.2.2.15 Regulation of cellular physiological process 22 517 1186 2.7 0.02

6355 0.0.2.2.15.9.6.5.3 Regulation of transcription, DNA dependent 14 300 790 2.5 0.04

50794 0.0.2.4 Regulation of cellular process 24 553 1247 3.0 0.01

9790 0.0.3.4 Embryonic development 3 10 15 5.5 0.00

16052 0.0.6.6.1.2.1 Carbohydrate catabolism 3 28 80 2.8 0.05

50791 0.0.6.8 Regulation of physiological process 23 558 1240 2.6 0.02

43118 0.0.6.8.0 Negative regulation of physiological process 6 94 147 2.4 0.03

50789 0.0.7 Regulation of biological process 25 613 1355 2.7 0.02

Molecular function

16747 0.2.2.15.0.2 Transferase activity, other than amino-acyl groups 3 28 74 2.8 0.04

8415 0.2.2.15.0.2.0 Acyltransferase activity 3 28 74 2.8 0.04

4857 0.2.4.2 Enzyme inhibitor activity 5 65 148 2.7 0.04

Cellular component

19867 0.1.0.10.7 Outer membrane 3 13 22 4.7 0.00

DOWN_REGULATION

Biological process

7155 0.0.2.0.0 Cell adhesion 8 116 252 2.5 0.03

9966 0.0.2.0.4.2 Regulation of signal transduction 5 35 57 4.0 0.00

9968 0.0.2.0.4.2.0 Negative regulation of signal transduction 4 22 32 4.2 0.00

6508 0.0.2.2.9.9.2.12 Proteolysis 11 173 458 2.7 0.01

6817 0.0.2.2.17.9.0.0.2 Phosphate transport 3 22 62 3.0 0.04

1775 0.0.6.7.2 Cell activation 3 20 27 3.2 0.02

45321 0.0.6.7.2.0 Immune cell activation 3 20 27 3.2 0.02

6955 0.0.6.7.6 Immune response 9 141 258 2.4 0.02

6952 0.0.9.2.1 Defense response 9 155 289 2.1 0.05

9613 0.0.9.2.3.2 Response to pest, pathogen or parasite 6 87 124 2.2 0.05

Molecular function

5509 0.2.1.10.0.1 Calcium ion binding 15 256 538 2.8 0.02

8233 0.2.2.6.7 Peptidase activity 12 181 478 3.0 0.01

4175 0.2.2.6.7.2 Endopeptidase activity 11 142 352 3.4 0.00

4252 0.2.2.6.7.2.5 Serine-type endopeptidase activity 8 61 151 4.7 0.00

4263 0.2.2.6.7.2.5.3 Chymotrypsin activity 6 40 119 4.5 0.00

4295 0.2.2.6.7.2.5.20 Trypsin activity 6 43 128 4.3 0.00

8236 0.2.2.6.7.5 Serine-type peptidase activity 8 65 164 4.5 0.00

Cellular component

12505 0.1.0.10.1 Endomembrane system 5 57 92 2.6 0.04

19898 0.1.0.10.2 Extrinsic to membrane 3 18 26 3.4 0.02

Note. MAPPFinder was used to identify the differentially expressed GO terms based on the Z score (� 2) and permutation p value (� 0.05). The GOID,

hierarchical tree (Path), GO term name (GO name), the number of genes changed within each functional gene category, number of genes measured on the array

and number of the genes in the GO database, statistical significance value Z score, and permutation p value were listed. GO terms with at least three genes

changed and permutation test p value � 0.05 were listed in the table.
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FIG. 3—Continued.
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measurement to determine the degree to which a functional

gene system changes across dose. As an alternative to

representing annotations by the average of the annotated

genes, the sum or the median expression profile could also be

calculated using the GO-Quant. In most cases, the resulting

plots are virtually identical (data not shown). Such an

approach gives one the ability to calculate the ED50 for

a specific functional GO term, which is important for risk

assessment.

Time Course Gene Alteration after a Single Injection of
SM at a Dose of 6 mg/kg

In order to demonstrate the above application to the time
course within this microarray data set, we further applied the
above approach as illustrated in Figure 1 to analyze the time
course data after the single injection of SM at a dose of 6 mg/kg.
Figure 6 shows the hierarchical clustering analysis of 1111
genes whose transcription was significantly (p � 0.001) al-
tered across the selected time points (6 mg/kg SM). Using

FIG. 3. GO-based hierarchical cluster analyses of gene expression data across dose after injection of SM at 6 (A) and 24 h (B). GO analysis was performed

using MAPPFinder. The average ratio of the genes in a statistically significant functional gene category (GOID in GO database) was calculated with GO-Quant.

The output file, including GO term, Z score, average intensity or ratio, and gene ID, was imported to TIGR MEV (Saeed et al., 2003) and a hierarchical cluster

analysis conducted using average linkage and Euclidean dissimilarity methods (Eisen et al., 1998).
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FIG. 4. Dose response of GOID in biological process (A) and molecular function gene categories (B) 6 h after SM injection. GO analysis was performed using

MAPPFinder. The average ratio of the genes in a statistically significant functional gene category (GOID in GO database) was calculated with GO-Quant.
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FIG. 5. Dose response of GOID in biological process (A) and molecular function gene categories (B) 24 h after SM injection. GO analysis was performed

using MAPPFinder. The average ratio of the genes in a statistically significant functional gene category (GOID in GO database) was calculated with GO-Quant.
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cluster analysis, we identified changes in transcription in
specific genes, e.g., upregulation of heme oxygenase 1, cyclin
G, and cyclin-dependent kinase inhibitor 1A and downregu-
lation of protein kinase C and chemokine ligand 12. As

discussed, it is challenging to interpret these previous results
in a biological context. Table 4 shows the list of GOID from
the MAPPFinder analysis representing a global picture of
biological processes, cellular components and molecular

FIG. 6. Hierarchical cluster analysis of altered gene expression in a time-dependent manner after injection of SM at a dose of 6 mg/kg. Genes significantly

changed across time points after exposure were included in hierarchical cluster analysis using average linkage and Euclidean dissimilarity methods. Clusters A and

B show the details of genes including Affymetrix probe ID and gene name.
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TABLE 4

Statistically Significantly Changed GO Terms across Time at a Dose of 6 mg/kg of SM

GOID Path GO name

Number

changed

Number

measured

Number

in GO Z score Permutation p

UP_REGULATION
Biological process
7049 0.0.2.2.1 Cell cycle 12 116 204 2.9 0.02
74 0.0.2.2.1.6 Regulation of progression through cell cycle 10 67 114 3.9 0.00
7050 0.0.2.2.1.6.1.0 Cell cycle arrest 3 12 17 3.3 0.01
42157 0.0.2.2.9.9.2.4 Lipoprotein metabolism 3 11 29 3.5 0.01
16567 0.0.2.2.9.9.2.9.17.0 Protein ubiquitination 5 37 189 2.5 0.03
6805 0.0.2.2.9.30 Xenobiotic metabolism 3 12 12 3.3 0.04
51244 0.0.2.2.15 Regulation of cellular physiological process 38 518 1186 3.0 0.01
6869 0.0.2.2.17.10 Lipid transport 4 21 42 3.1 0.02
50794 0.0.2.4 Regulation of cellular process 39 554 1247 2.7 0.02
9888 0.0.3.14 Tissue development 5 35 45 2.6 0.04
40007 0.0.4 Growth 7 62 90 2.4 0.03
50791 0.0.6.8 Regulation of physiological process 38 560 1240 2.4 0.03
9410 0.0.9.1.1.12 Response to xenobiotic stimulus 3 12 13 3.3 0.04
6950 0.0.9.5 Response to stress 17 208 343 2.4 0.03

Molecular function
8270 0.2.1.10.0.2.8 Zinc ion binding 16 188 815 2.5 0.03
16874 0.2.2.9 Ligase activity 8 75 329 2.4 0.03
16879 0.2.2.9.1 Ligase activity, forming carbon-nitrogen

bonds
8 57 250 3.3 0.01

16881 0.2.2.9.1.0 Acid–amino acid ligase activity 8 49 228 3.8 0.01
4842 0.2.2.9.1.0.4 Ubiquitin-protein ligase activity 6 44 216 2.8 0.02
16651 0.2.2.11.10 Oxidoreductase activity, acting on NADH or

NADPH
4 11 42 4.9 0.00

16746 0.2.2.15.0 Transferase activity, transferring acyl groups 5 31 80 3.0 0.02
16747 0.2.2.15.0.2 Transferase activity, transferring groups

other than amino-acyl groups
5 28 74 3.2 0.01

8415 0.2.2.15.0.2.0 Acyltransferase activity 5 28 74 3.2 0.01
8374 0.2.2.15.0.2.0.5 O-acyltransferase activity 4 9 16 5.6 0.00
4857 0.2.4.2 Enzyme inhibitor activity 8 65 148 2.9 0.02

Cellular component
151 0.1.0.8.18 Ubiquitin ligase complex 5 35 187 2.6 0.02

DOWN_REGULATION
Biological process
7156 0.0.2.0.0.1.3 Homophilic cell adhesion 5 16 76 3.7 0.00
8277 0.0.2.0.4.0.3.7 Regulation of G-protein–coupled receptor

protein signaling pathway
4 14 17 3.1 0.02

51301 0.0.2.2.3 Cell division 5 28 52 2.2 0.05
6333 0.0.2.2.7.4.0.1.0.0 Chromatin assembly or disassembly 4 20 93 2.2 0.05
6471 0.0.2.2.9.9.2.9.5 Protein amino acid ADP-ribosylation 3 8 22 3.3 0.02
1775 0.0.6.7.2 Cell activation 5 20 27 3.0 0.01
45321 0.0.6.7.2.0 Immune cell activation 5 20 27 3.0 0.01
46649 0.0.6.7.2.0.1 Lymphocyte activation 4 15 22 2.9 0.02
42493 0.0.9.1.1.4 Response to drug 3 8 18 3.3 0.02

Molecular function
19992 0.2.1.12.0 Diacylglycerol binding 4 16 21 2.7 0.04
4263 0.2.2.6.7.2.5.3 Chymotrypsin activity 7 40 119 2.5 0.03
4295 0.2.2.6.7.2.5.20 Trypsin activity 7 43 128 2.3 0.04
16763 0.2.2.15.3.2 Transferase activity, transferring pentosyl

groups
3 12 32 2.4 0.05

3950 0.2.2.15.3.2.4 NADþ ADP-ribosyltransferase activity 3 5 12 4.5 0.00
4674 0.2.2.15.6.1.17.4 Protein serine/threonine kinase activity 16 127 333 2.3 0.05
5245 0.2.12.5.0.1.1.2.1 Voltage-gated calcium channel activity 4 12 18 3.5 0.02

Cellular component
5891 0.1.0.10.4.1.1.7 Voltage-gated calcium channel complex 3 6 11 4.0 0.02
1772 0.1.0.10.8.9 Immunological synapse 3 11 31 2.5 0.04
42101 0.1.0.10.8.9.1 T-cell receptor complex 3 5 5 4.5 0.00

Note. MAPPFinder was used to identify the differentially expressed GO terms based on the Z score (� 2) and permutation p value (� 0.05). The GOID,

hierarchical tree (Path), GO term name (GO name), the number of genes changed within each functional gene category, number of genes measured on the array

and number of the genes in the GO database, statistical significance value Z score, and permutation p value were listed. GO terms with at least three genes

changed and permutation test p value � 0.05 were listed in the table.
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function genes that are significantly altered (upregulated or
downregulated) at the transcriptional level following SM
exposure at 6 mg/kg (Table 4). As shown in Figures 7 and 8,
GO-Quant analysis revealed time-dependent alterations in
various functional gene categories within biological process,
cellular component, and molecular function genes. In the
biological process gene category, time-dependent downregula-
tion in immune cell activation (GOID 45321, 46649, and
1775), cell division (GOID 51310), and response to drug
(GOID 42493) were observed, especially at 6 h after SM
exposure. In addition, time-dependent upregulations in the
regulation of cell cycle (GOID 7050 and 74), protein

ubiquitination (GOID 16567) gene pathways were also ob-
served, particularly at 6 h postexposure. Our results confirm
that the above systems approach allows us to demonstrate
time-dependent alteration in cellular and molecular gene
function based on GO categorization. It is not our focus in
this paper to describe why these functional transcriptional
alterations after SM injection are observed. Our current anal-
ysis is intended to demonstrate that our systematic approach to
applying the average data within the statistically significant
GOID is a powerful tool to quantitatively describe and interpret
dose- or time-dependent relationships discovered using micro-
array data.

FIG. 7. GO-based hierarchical cluster analyses of gene expression data across time after injection of SM at a dose of 6 mg/kg. GO analysis was performed

using MAPPFinder. The average ratio of the genes in a statistically significant functional gene category (GOID in GO database) was calculated with GO-Quant.

The output file, including GO term, Z score, average intensity or ratio, and gene ID, was imported to TIGR MEV (Saeed et al., 2003) and a hierarchical cluster

analysis conducted using average linkage and Euclidean dissimilarity methods (Eisen et al., 1998).
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FIG. 8. Time-dependent alteration of GOID in biological process (A) and molecular function genes (B) after SM injection at dose of 6 mg/kg. GO analysis was

performed using MAPPFinder. The average ratio of the genes in a statistically significant functional gene category (GOID in GO database) was calculated with

GO-Quant.
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CONCLUSION

Using gene expression profiling following SM exposure, we
have conducted a conventional GO analysis and compared it
with our proposed quantitative approach for functional GO
analysis. Our results confirmed that GO analysis is a powerful
approach to generate an unbiased view of the functional gene
alterations by SM. However, the quantitative approach we
propose using combined average raw gene expression values
(e.g., intensity or ratio) of genes associated with specific
functional gene categories derived from the MAPPFinder
results in conjunction with the GO-Quant algorithm provides
a powerful tool to interpret microarray data in a dose- or time-
dependent manner. Additionally, this approach provides
a global measurement based on pathway response as compared
to single-gene assessments and enables one to calculate the
corresponding ED50 for each specific functional GO term,
which is important for risk assessment. The application of such
quantitative interpretation of toxicogenomic data is likely to
become increasingly useful for the interpretation of toxicoge-
nomic data generated for evaluating mechanistic similarity of
novel chemicals.
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