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ABSTRACT

We have previously shown that relative potency factors and DNA adduct measurements are inadequate for predicting
carcinogenicity of certain polycyclic aromatic hydrocarbons (PAHs) and PAH mixtures, particularly those that function
through alternate pathways or exhibit greater promotional activity compared to benzo[a]pyrene (BaP). Therefore, we
developed a pathway-based approach for classification of tumor outcome after dermal exposure to PAH/mixtures. FVB/N
mice were exposed to dibenzo[def,p]chrysene (DBC), BaP, or environmental PAH mixtures (Mix 1-3) following a 2-stage
initiation/promotion skin tumor protocol. Resulting tumor incidence could be categorized by carcinogenic potency as
DBC>>BaP¼Mix2¼Mix3>Mix1¼Control, based on statistical significance. Gene expression profiles measured in skin of
mice collected 12 h post-initiation were compared with tumor outcome for identification of short-term bioactivity profiles.
A Bayesian integration model was utilized to identify biological pathways predictive of PAH carcinogenic potential during
initiation. Integration of probability matrices from four enriched pathways (P< .05) for DNA damage, apoptosis, response to
chemical stimulus, and interferon gamma signaling resulted in the highest classification accuracy with leave-one-out cross
validation. This pathway-driven approach was successfully utilized to distinguish early regulatory events during initiation
prognostic for tumor outcome and provides proof-of-concept for using short-term initiation studies to classify carcinogenic
potential of environmental PAH mixtures. These data further provide a ‘source-to-outcome’ model that could be used to
predict PAH interactions during tumorigenesis and provide an example of how mode-of-action-based risk assessment
could be employed for environmental PAH mixtures.
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Polycyclic aromatic hydrocarbons (PAHs) are a class of over 1500
chemicals formed as incomplete combustion products and re-
leased into the environment from both natural (e.g. forest fires)
or anthropogenic (e.g. burning of fossil fuels, tobacco, char-
broiled meats) sources. Several PAHs, particularly those with
more than 4 rings such as benzo[a]pyrene (BaP), dibenzo[def,p]-
chrysene (DBC), have been designated as Class 1 known or Class
2A probable human carcinogens by the International Agency for

Research on Cancer (IARC, 2010). While much of the research on
PAH carcinogenicity focuses on individual PAHs and BaP, in par-
ticular, most human exposures to PAHs result from chemical
mixtures through dietary, inhalation, or dermal routes of expo-
sure. Primary sources of environmental exposure to these PAHs
include wood smoke, creosote, and burning of fossil fuels and
tobacco (IARC, 2010). Recently, diesel engine exhaust was added
to the list of Class 1 known human carcinogens and certain
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other PAH-containing mixtures, including air pollution, have
been designated as probable or possible Class2A/B carcinogens
in humans (IARC, 2010, 2014).

One of the most difficult challenges for risk assessment is
the evaluation of health hazards from exposure to environmen-
tal chemical mixtures. Currently, significant data gaps exist for
understanding carcinogenicity of PAH mixtures and complex
environmental mixtures containing PAHs. Further, little is
known about the mechanisms of tumorigenesis for PAH mix-
tures. Current assessment of cancer risk for PAHs involves test-
ing compounds in the 2-year rodent bioassay, which is not
practical for screening large numbers of compounds or mixtures
due to expense and time. Therefore, alternative approaches are
typically utilized for evaluating the carcinogenic potential of
PAHs and PAH-containing mixtures. Currently, the primary
method for assessing cancer risk of complex mixtures is the rel-
ative potency factor (RPF) approach in which complex mixtures
are evaluated based on a subset of individual component PAHs
compared with BaP as a surrogate or reference (US EPA, 2010).
However, we and others have found this approach inadequate
for predicting carcinogenicity of mixtures and certain individual
PAHs, particularly those that function through alternate path-
ways or exhibit greater promotional capacity compared to BaP
(Courter et al., 2008; Siddens et al., 2012).

Significant challenges have also been identified in utilizing
such reference-based approaches for estimating risk from expo-
sure to PAHs in air pollution or waste sites. Complex environ-
mental mixtures subjected to weathering and aging processes
can contain many different PAHs, including alkyl-, N-, S-, and
O-substituted forms, along with other unknown chemicals;
however, only a limited number of unsubstituted PAHs
have been characterized for use in RPF calculations. Mixture
toxicity for risk assessment is calculated based on select indi-
vidual components and assumes additivity through a common
mechanism of action for PAHs compared to BaP as a standard.
Therefore, the RPF approach does not take into consideration
mechanistic information about the different pathways, cells,
and tissues affected by PAHs during initiation and promotion.
This approach is also insufficient for predicting carcinogenicity
of complex real-world environmental mixtures of unknown
composition.

In this study, we propose an innovative model for determin-
ing carcinogenic risk of PAH mixtures using mechanistic
approaches. We hypothesize that a chemical bioactivity profile
measured after short-term exposure to individual and mixture
PAHs from global transcriptional profiling can be used to discrim-
inate future carcinogenic potential based on important mecha-
nistic differences among exposures. The bioactivity profile acts
as a unique fingerprint for genes and pathways activated by
chemicals and mixtures postexposure and can be used for pre-
dicting long-term consequences such as cancer outcome. An im-
portant aspect of the bioactivity profile is that the gene
signatures are linked to chemical mechanism of action and can
also provide insight into alternate mechanisms of PAH carcino-
genesis and related mechanisms for complex mixtures. Based on
preliminary data, we demonstrate that long-term cancer out-
come for PAHs and mixtures can be predicted from high-content
genomic evaluation of bioactivity after short-term exposure.

MATERIALS AND METHODS

Chemicals. BaP and DBC were handled in accordance with
National Cancer Institute Guidelines. All pure PAHs and

mixtures were prepared under UV depleted light as described in
Siddens et al. (2012). The PAHs and environmental PAH mixtures
utilized for initiation of skin carcinogenesis in animal models
are summarized in Table 1. PAH mixture 1 (Mix 1) consisted of
5 mg/ml diesel particulate exhaust (DPE) in vehicle (toluene con-
taining 5% DMSO). PAH mixture 2 (Mix 2) consisted of 5 mg/ml
each DPE and coal tar extract (CTE) in vehicle. PAH mixture 3
(Mix 3) consisted of 5 mg/ml DPE, 5 mg/ml CTE, and 10 mg/ml
cigarette smoke condensate (CSC).

Animal studies and tumor analysis. FVB/N mice were exposed to
PAHs or PAH mixtures following a 2-stage tumor-promotion
protocol in skin. All procedures were conducted according to
National Institutes of Health guidelines and were approved by
the Oregon State University Institutional Animal Care and Use
Committee. Six-week-old, female FVB/N inbred mice obtained
from the NCI-Fredrick’s Animal Production Program
(Frederick,Maryland) were fed AIN93-G pellets (Research Diets,
Inc., New Brunswick, New Jersey) throughout the experiment.
At 7.5 weeks of age, mice (groups of 36) were initiated with PAH
treatments (summarized in Table 1) by application to shaved
skin in 200 ml toluene vehicle. Animals for microarray analysis
(N¼ 4 or 5 per treatment) were killed 12 h after treatment and
skin was collected for RNA isolation. Two weeks post-initiation,
a 25-week promotion regimen was begun with remaining ani-
mals, treating animals twice weekly with 6.5 nmol 12-O-tetrade-
canoylphorbol-13-acetate in 200 ll acetone. Mice were observed
and tumor incidence recorded weekly throughout the 25-week
promotion interval. Following promotion, all animals were
euthanized and necropsied. Tumors were removed, fixed in for-
malin, and prepared for histopathology of hematoxylin and
eosin-stained sections to determine stage of progression.
Tumor incidence was measured as the percent incidence for
each treatment based on tumor type. Statistical significance
among the treatment groups was calculated by ANOVA with
Newman–Keuls multiple testing correction.

Microarrays and gene expression analysis. Individual mouse dermal
samples were analyzed by Agilent microarray after initiation
with PAHs (N¼ 4 biological replicates, Table 1) or toluene control
(N¼ 5 biological replicates). RNA was isolated from flash frozen
skin samples in Trizol Reagent (Life Technologies, Carlsbad,
California) followed by clean-up with Qiagen RNeasy mini prep
kit (Valencia, California) according to manufacturer protocols.
RNA quality and quantity were assessed by Agilent Bioanalyzer
(Santa Clara, California) and Nanodrop spectrophotometry
(Thermo Fisher Scientific, Waltham, Massachusetts) analysis,

TABLE 1. PAH treatments

Treatment Components

Control 200 ml toluene
BaP 200 ml toluene 400 nM BaP
DBC 200 ml toluene 4 nM DBC
Mix 1 200 ml toluene 1 mg DPE
Mix 2 200 ml toluene 1 mg DPE 1 mg CTE
Mix 3 200 ml toluene 1 mg DPE 1 mg CTE 2 mg CSC

BaP, Benzo[a]pyrene (100 mg) (Midwest Research Institute, Kansas City, Missouri);

DBC, Dibenzo[def,p]chrysene (1.2 mg) (Midwest Research Institute); DPE, Diesel

particulate extract (SRM 1650b, National Institute of Standards and Technology,

Gaithersburg, Maryland); CTE, Coal tar extract (SRM 1597a, National Institute of

Standards and Technology); CSC, Cigarette smoke condensate (provided by

Hollie Swanson, University of Kentucky).
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respectively. Samples with A260/280 ratios of 1.9–2.2 and RNA
integrity values 6.5 or greater were selected for microarray anal-
ysis. For microarrays, RNA was labeled with Agilent’s 2 color
Quickamp kit for hybridization to the Agilent 8 X 60K mouse
array. Raw intensity data were quantile normalized by RMA
summarization (Bolstad et al., 2003) and subject to pairwise
analysis of variance (Kerr et al., 2000) with Tukey’s post hoc test
and 5% false discovery rate calculation (Benjamini, 1995).

Bioinformatics. Unsupervised hierarchical clustering of microar-
ray data was performed using Euclidean distance metric and
centroid linkage clustering to group gene expression patterns by
similarity. The clustering algorithms, heat map visualizations,
and centroid calculations were performed with Multi-
Experiment Viewer (Saeed et al., 2003) software based on Log2
expression ratio values. Functional enrichment analysis was
performed in MetaCore (GeneGO, Thomson Reuters) based on
mappings of the significant (P< .05) genes in each treatment
group onto built-in functional network processes and Gene
Ontology biological process categories. Analyses were per-
formed for each database independently. Metacore’s knowl-
edgebase, which is derived through manual annotation and
curation from the literature, was used for the biological network
processes. Statistical significance for enrichment was calculated
using a hypergeometric distribution, where the P-value repre-
sents the probability of a particular mapping arising by chance
for experimental data compared with the background, which
included all genes on the Agilent platform (Nikolsky et al., 2009).
All processes included more than 15 genes. Gene Ontology bio-
logical processes were further filtered to include only the top 10
most significant (P< 5E�7) processes for each treatment group
that were categorized greater than level 2 in the gene ontology
tree to reduce redundancy. To identify major transcriptional
regulators of gene expression by PAHs, the Statistical
Interactome tool was used in MetaCore to measure the inter-
connectedness of genes in the experimental dataset relative to
all known interactions in the background dataset. Statistical sig-
nificance of overconnected interactions was also calculated
using a hypergeometric distribution. Networks were con-
structed in MetaCore for experimental data using an algorithm
that identifies the shortest path to directly connect nodes in the
dataset to transcription factors. Network visualizations were
created in Cytoscape (Shannon et al., 2003) utilizing the spring-
embedded layout. PAH treatments were classified based on
tumor outcome with Visual Integration for Bayesian Evaluation
(VIBE) v2.0 (Beagley et al., 2010) in which Bayesian integration of
significantly enriched (P< .05) pathways was performed using
k-nearest neighbors statistical learning algorithm (Atiya, 2005)
with leave-one-out cross validation. VIBE performs Bayesian
integration of the experimental datasets (i.e. pathways) and
provides a classification accuracy based on the integrated prob-
ability model (Webb-Robertson et al., 2009).

RESULTS

Classification of PAH Treatments Based on Tumor Outcome
PAHs and environmental PAH mixtures were classified into low,
moderate, or high categories based on their ability to induce
tumorigenesis following a 2-stage initiation/promotion skin
tumor protocol. Classification was based on statistical evalua-
tion of tumor incidence calculated as the percent incidence per
tumor type, which was determined by histology from the pro-
gression from hyperplasia to papilloma, carcinoma in situ or

squamous cell carcinoma. Overall, exposure of FVB/N mice to
BaP, DBC, or 1 of 3 environmental PAH mixtures resulted in
treatment-specific tumor incidence profiles; although the rela-
tive amounts of each tumor type was similar across all PAH
treatments (Fig. 1A). The percent incidence of papillomas was
greatest for all PAHs and PAH mixtures, while carcinoma in situ
was the least prevalent tumor type. In animals initiated with
vehicle control or Mixture 1, only one papilloma was detected
resulting in 3% tumor incidence for each group. Tumor inci-
dence was highest after initiation with DBC (P< .001 compared
with control), ranging from 50 to 90% depending on tumor type.
Tumor incidence was similar for BaP, Mix 2, and Mix 3, all of
which were significant from controls (P< .05) and were not sig-
nificantly different from each other. Actual percent tumor inci-
dence, number of animals per treatment group, and individual
P-values for each tumor type are provided in Supplementary
Data S1. The carcinogenic potential for each PAH treatment
was ranked as DBC>>BaP¼Mix2¼Mix3>Mix1¼Control based
on statistical evaluation of tumor incidence, which was consis-
tent with that previously reported for time until tumor event
and tumor multiplicity for these treatments in mouse skin
(Siddens et al., 2012). Based on this ranking, PAH treatments
were categorized as having low (Mix 1), moderate (BaP, Mix 2,
Mix 3), or high (DBC) carcinogenic potential (Fig. 1B) for evalua-
tion of mechanisms driving PAH-mediated carcinogenesis
in skin.

Overall tumor incidence did not correlate with relative
potency calculated based on BaP equivalency (BaPeq) in Siddens
et al. (2012) in which mixture RPFs are determined using
reported RPFs (US EPA, 2010) for known components. Figure 2A
shows correlation of actual tumor incidence (black circles,
r2¼ 0.09, R¼ 0.5, P¼ .45) compared with predicted tumor inci-
dence from RPFs by Spearman rank. RPF calculations underesti-
mated carcinogenicity of DBC and the coal-tar containing
mixtures (Mix 2 and 3). Induction of Cyp1a1 gene expression
measured by microarray at 12 h postinitiation also correlated

FIG. 1. Classification of PAH and PAH mixture carcinogenic potential based on

tumor incidence. Exposure of female FVB/N mice to PAHs following a 2-stage

initiation/promotion skin tumor protocol resulted in (A) tumor incidence pro-

files of DBC>>>BaP¼Mix2¼Mix3>>Mix1¼Control, based on statistical signifi-

cance (***P< .0001, *P< .05 by 1-way ANOVA with Newman–Keuls multiple

testing correction). Tumor incidence was calculated as the percent incidence for

each treatment based on tumor type. B, Based on this ranking, PAH treatments

were categorized as having low, moderate, or high carcinogenic potential in

mouse skin.
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very poorly with tumor incidence by treatment group (r2¼ 0.004,
R¼�0.30, P¼ .68). Further, DNA adduct formation measured
previously in skin postinitiation (Siddens et al., 2012) did not sig-
nificantly correlate with tumor incidence (r2¼ 0.14, R¼ 0.70,
P¼ .68) as shown in Figure 2B. DNA adducts were more accu-
rately predicted by RPFs than tumor incidence (Fig. 2C), particu-
larly for DBC treatment. Actual adduct formation correlated
with calculated BaPeq (Spearman 0.90, P¼ .083; linear regression
r2¼ 0.95, P¼ .005).

PAHs and PAH Mixtures Have Unique Gene Signatures
Postinitiation
Global gene expression was evaluated in mouse skin by micro-
array 12 h postinitiation with BaP, DBC, and 3 environmental
PAH mixtures in order to identify gene signatures during initia-
tion associated with PAH-induced skin carcinogenesis. Overall,
922 genes were differentially expressed (P< .05) in skin after
treatment with any PAH or PAH mixture compared with vehicle
control; including 137, 246, 97, 428, and 521 genes for BaP, DBC,

FIG. 2. Correlation of traditional endpoints with tumor incidence in mouse skin after exposure to PAHs and PAH mixtures. A, Comparison of actual tumor incidence

measured in skin to predicted tumor incidence calculated from BaP equivalency (BaPeq). Actual tumor incidence did not significantly correlate with calculated RPFs

(Spearman R¼0.50, P¼ .45; linear regression r2¼0.09, P¼ .62). B, Correlation of DNA adduct formation (circles) and expression of Cyp1a1 transcripts (squares) with

tumor incidence by Spearman rank. Linear regression was not significant from zero (P> .43). C, Comparison of actual DNA adducts measured in skin by 32P-postlabeling

(Siddens et al., 2012) to predicted adducts calculated from BaPeq. Actual adduct formation correlated with calculated RPFs with Spearman R¼0.90 (P¼ .08) and linear

regression r2¼0.95 (P¼ .005). D, Global gene expression in mouse skin 12 h postinitiation. Unsupervised clustering of 922 genes differentially expressed (P< .05, 5% FDR)

across all treatments. Enlarged heatmap shows gene cluster of highly differentially expressed genes in BaP, Mix2, and Mix3 groups. Values are log2-fold change for all

treatments compared with control; red, green, and black represent upregulated, downregulated, and unchanged genes, respectively.
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Mix 1, Mix 2, and Mix 3, respectively (Supplementary Data S2).
Comparison of significant genes among treatments is visualized
as a 5-way Venn diagram in Supplementary Data S2. Raw and
normalized Agilent data files are available online at http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE39455.
Microarray results were confirmed using RT-qPCR on a subset of
6 genes with decreased, increased, and no significant change in
expression levels relative to control (Larkin et al., 2013).
Unsupervised bidirectional hierarchical clustering of all differ-
entially expressed genes resulted in distinct clustering of biolog-
ical replicates based on treatment group with clear separation
between the individual PAH exposures (BaP and DBC) and the
environmental mixtures (Fig. 2D). Gene signatures did not clus-
ter based on tumor outcome suggesting they were indicative of
treatment-specific responses in skin that were not necessarily
contributing to tumorigenesis. This is further supported by the
fact that the total number of genes differentially regulated by
each treatment group did not correlate with overall tumor inci-
dence (Spearman R¼ 0.3, P¼ .68) and linear regression of these
endpoints was not significant from 0 (r2¼ 0.22, P¼ .43). In partic-
ular, the environmental PAH mixtures containing CTE (Mix 2
and Mix 3) altered the largest number of transcripts in skin post-
initiation; although, did not result in the highest incidence of
skin tumors. Instead, DBC treatment resulted in the highest
tumor incidence while only causing moderate gene expression
in skin postinitiation. Based on the strong similarity in both the
gene expression patterns and overall tumor incidence by Mix 2
and Mix3, it is apparent that their response was either driven by
the CTE alone or by the cumulative effect of diesel exhaust and
CTE present in the mixtures with minimal impact from the
addition of CSC to Mix 3.

Even though the overall transcriptional response was unre-
lated to tumor outcome, there were clusters of genes with gene
expression patterns similar to the tumor profiles for these PAHs
suggesting that a subset of the transcriptional data may be pre-
dictive of tumor outcome. The enlarged heatmap in Figure 2D
shows 1 example cluster of genes that are highly differentially
expressed for BaP, Mix 2, and Mix 3 with a distinct pattern of
response from DBC indicating that this particular gene cluster
may be relevant for initiation of PAH-induced skin cancer.
Genes in this cluster included several phase I and II metaboliz-
ing enzymes known to be involved in metabolism of PAHs,
including Gsta1, Gsta2, Gsta3, Gpx2, Cyp1a1, Cyp1b1, and Nqo1.
Therefore, in order to identify the subset of gene changes during
initiation that may be predictive of tumor outcome, we used the
full gene expression dataset to systematically model gene
changes driving carcinogenesis.

Pathway-Based Classification of Tumor Outcome
We hypothesized that PAH-induced gene regulation from bio-
logical pathways most closely associated with induction of car-
cinogenesis could be predictive of tumor outcome after
exposure. Further, we hypothesized that the mechanism-based
gene signatures associated with these pathways could be used
to classify potential carcinogens based on their carcinogenic
potential. The biological processes that met significance criteria
(as described in the Methods section) for Gene Ontology and
Metacore processes are shown in Figure 3 as a heatmap in
which the most significant functions for each treatment are col-
ored blue and the least significant are colored black. Actual
enrichment P values are provided in Supplementary Data S3.
Overall, the functions enriched in skin after initiation with Mix
2 and 3 are very similar to each other and mostly unique from
the functions enriched for the individual PAH treatments of BaP

and DBC. The most significant processes for mixtures 2 and 3
include those associated with cell cycle, mitosis, and response
to xenobiotic or DNA damage stimulus. Fewer biological proc-
esses are significant postinitiation with BaP and include those
associated with xenobiotic metabolism and response to chemi-
cal stimulus and oxidative stress. There is little overlap in the
processes significant between BaP and DBC and those enriched
postinitiation with DBC include cell cycle, apoptosis, interphase
of mitosis, and ubiquitin-dependent catabolic processes. While
significant enrichment of these functions postinitiation by
PAHs provides a basis for understanding their individual mech-
anisms of action, they do not necessarily indicate which path-
ways are linked to PAH carcinogenic response. In fact, Mix 1,
which did not induce skin tumors, significantly altered several
pathways in common with Mix 2/3 associated with
DNA–protein complex assembly or nucleosome assembly, sug-
gesting that these processes are not associated with carcino-
genic outcome (Fig. 3).

Therefore, in order to systematically filter the significant
pathway list in Figure 3 to only those associated with skin
carcinogenesis, the microarray transcripts from enriched Gene
Ontology and MetaCore processes were evaluated for their
ability to classify the PAH treatment groups based on tumor
outcome utilizing a Bayesian integration framework. This
approach evaluates the ability of the genes differentially
expressed in each pathway to classify the PAH exposures based
on tumor outcome (low, moderate, or high) utilizing the k-near-
est neighbors statistical learning algorithm to build likelihood
probability models for each pathway. A classification accuracy
was calculated for each pathway based on the number of cor-
rectly classified samples compared with the total number of
samples. In this case, each sample is an individual animal or
biological replicate in the study. Since it is likely that multiple
pathways are contributing to the carcinogenic potential of the
different PAHs and environmental PAH mixtures, we integrated
the posterior probabilities of each pathway utilizing a Bayesian
approach to further identify the subset of pathways that result
in the highest classification accuracy when integrated together.
As shown in Figure 4A, 4 pathways have high individual classifi-
cation accuracies, ranging 0.80–0.90, including (1) Response to
DNA damage stimulus, (2) Regulation of apoptosis, (3) Cellular
response to chemical stimulus, and (4) Interferon gamma sig-
naling. When integrated together, the overall classification
accuracy improves and the 4 pathways above predict tumor
outcome with 100% classification accuracy indicating their
importance for the carcinogenic potential of PAHs during
initiation.

A total of 172 genes are represented in the pathways
from Figure 4A and were differentially expressed in skin postin-
itiation by PAHs. The list of genes from the predictive pathways
is provided in Supplementary Data S4. Principal components
analysis (PCA) on this gene set allows for visualization of how
these particular genes, reduced from 55K on the Agilent array,
may be driving tumor response after PAH initiation (Fig. 4B).
Clustering of the samples by PCA clearly distinguishes the sam-
ples based on carcinogenic potential, such that the control and
Mix 1 samples group together (low), the Mix 2, Mix 3, and BaP
samples group together (moderate), and the DBC samples group
together (high). In addition to predicting carcinogenesis of the
PAHs tested in this study, our data suggest that this approach
could also be used to predict carcinogenic potential of unknown
PAHs or environmental PAH mixtures in skin based on short-
term exposure assessment with additional evaluation and
validation.
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FIG. 3. Pathways significantly enriched (P< .05) in skin postinitiation by PAH and PAH mixtures. Functional enrichment analysis was performed in MetaCore (GeneGO,

Thomson Reuters) based on mappings of the significant (P< .05) genes in each treatment group onto built-in functional network processes and Gene Ontology biologi-

cal process categories. Statistical significance for enrichment was calculated using a hypergeometric distribution. All processes included more than 15 genes. Gene

Ontology biological processes were further filtered to include only the top 10 most significant (P<5E�7) processes for each treatment group that were categorized

greater than level 2 in the Gene Ontology tree.
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FIG. 4. Classification of PAHs and PAH mixture treatments based on tumor outcome. A, Bayesian integration of pathways using k-nearest neighbors statistical

learning algorithm with leave-one-out cross validation improves classification accuracy of PAH treatments based on tumor outcome. The color scale for the

heatmaps indicates accuracy for actual versus predicted classification of treatments into the low, moderate, and high tumor categories. Highest classification accuracy

(100%) is indicated in dark shades and lowest (0%) in white. The panel on the left-hand side shows classification accuracy for each pathway individually and the panel

on the right-hand side shows the classification accuracy for all four pathways integrated. B, PCA of the predictive gene set shows separation of treated animals based

on tumor outcome.
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Distinct Transcriptional Regulators Driving PAH-Mediated Gene
Expression in Predictive Pathways
To understand how the pathways predictive of PAH carcinogen-
esis are regulated in skin during initiation, we performed tran-
scription factor enrichment analysis on the significant genes
differentially expressed (out of 172 genes) by each PAH treat-
ment within the predictive pathways. Table 2 lists the transcrip-
tion factors for each treatment that are significantly (P< .05)
overconnected (i.e. transcription factors with a significant num-
ber of downstream target genes that are differentially expressed
in the gene list compared with that calculated by chance). The
most significant transcription factors regulating gene expres-
sion after treatment with BaP, Mix 2, and Mix 3 include Arnt,
Nrf2, and Sp1. In contrast, DBC-treated genes were most signifi-
cantly regulated by Myc and p53 resulting in a relatively higher
tumor response. These results indicate that there are distinct
mechanisms regulating gene expression postinitiation leading
to moderate and high levels of skin tumors after PAH exposure.
The gene regulatory networks associated with each treatment
are shown in Figure 5. Through investigation of the subnet-
works for BaP and the PAH mixtures 2 and 3, it is apparent that
even though they regulate transcription through the same tran-
scription factors, there are many differentially expressed genes
that are unique to each treatment group. The genes that are
regulated in common between BaP and the mixtures primarily
include Phase I and Phase II enzymes important for the activa-
tion and metabolism of PAHs. Most of these genes were not sig-
nificant after treatment with Mix 1 and none were significant
postinitiation with DBC. Overall, however, the treatments asso-
ciated with a moderate tumor response are more similar at the
pathway level than at the gene level suggesting that gene
regulation within pathways make better predictors of tumor
outcome than a suite of individual gene biomarkers.
Transcriptional regulation of genes associated with a high
tumor outcome was mostly unique to DBC treatment (Fig. 5).

DISCUSSION

Environmental mixtures containing PAH chemicals are of con-
tinued and emerging concern because of the existing significant
data gaps for understanding their carcinogenic potential and
their modes of action as carcinogens. Certain individual PAHs,
including BaP and DBC used in our study, are known to produce
tumors in mouse skin, lung, liver, and breast and were recently
elevated to Class 1 known and Class 2A probable human carci-
nogens, respectively (IARC, 2010). However, most human PAH
exposures result from chemical mixtures of multiple PAHs.
Current risk assessment of PAHs primarily relies on the refer-
ence-based approach of applying RPFs compared with BaP
equivalents for estimating carcinogenicity, which assumes a
common mode of action for PAH-induced tumors. We have pre-
viously identified tumor profiles for several individual and

mixture PAHs that did not correlate with calculated RPF values
or with formation of DNA adducts in the 2-stage mouse skin
tumor model (Siddens et al., 2012, Figs 2A and B). For the most
part, calculated RPFs based on BaPeq underestimated potency in
skin. In particular, DBC, which has a reported RPF of 30, was
found to be over 100-fold more potent than BaP in our study.
Also, the PAH mixtures containing CTE (Mix 2 and Mix 3)
induced tumors with similar incidence, multiplicity, and
latency to BaP despite calculated BaPeqs of 0.34 and 0.47, respec-
tively, which suggested much lower potency. We also found
that the addition of CSC in Mix 3 did not produce an elevated
tumor response above Mix 2 as was predicted based on the rela-
tive BaPeq. These data support the idea that RPFs do not accu-
rately reflect carcinogenicity of certain individual PAHs or PAH
mixtures, which likely involve more complex interactions
among PAHs than can be predicted based on BaPeq additivity
resulting in either an under or over estimation of carcinogenic
potential. We therefore decided to evaluate the mechanisms for
initiation of skin tumors by BaP and DBC using gene expression
profiling and determine if reference mixtures reflect similar or
distinct mode of action compared to the individual PAHs.

Pathway-Based Classification of Carcinogenicity
In this study, we propose a method for predicting potency of
PAH chemicals and environmental PAH mixtures based on a
bioactivity profile derived from global transcriptional analysis
short-term postexposure. Using our initial dataset in mouse
skin as proof-of-concept, we provide evidence that a subset of
genes and pathways are capable of classifying PAHs and mix-
tures by carcinogenic potency. This approach does not require a
priori knowledge of individual components in mixtures nor does
it assume a common mechanism of action for all PAHs and mix-
tures. Instead, we propose that chemical-specific signaling after
exposure provides a unique signature or bioactivity profile for
each PAH/mixture that is reflective of its mode of action and
can be used to discriminate carcinogenic potency. Our current
data suggest that gene expressions within four pathways
related to DNA damage, apoptosis, response to chemical stimu-
lus, and interferon gamma signaling were most important for
describing variance in our skin model system associated with
carcinogenesis of PAHs. When all four pathways were
integrated together using a Bayesian framework, samples were
classified correctly by potency nearly 100% of the time.
Therefore, we provide evidence that short-term bioactivity
profiles for a subset of pathways can be used to predict carcino-
genic potential of unknown samples and mixtures.

The use of high-throughput data in toxicogenomics for iden-
tifying gene signatures and biomarkers associated with toxicity
and disease phenotype is increasingly common; however, the
application of systems approaches to risk assessment is still in
the early stages of evaluation (Lesko et al., 2013). We believe that
utilization of these approaches for complex environmental mix-
tures is an excellent case study for risk assessment due to the
significant lack of knowledge regarding mixture toxicity and
constituency. Similar genomic-based models have successfully
been applied to individual chemicals after short-term exposure
to identify modes of action for distinguishing hepatocarcino-
gens from noncarcinogens from in vivo rat and in vitro human
models (Gusenleitner et al., 2014; Song et al., 2012). In particular,
Gusenleitner et al. (2014) noted the tissue-specific responses
observed when modeling carcinogenicity of a broad range of
chemicals from short-term genomic responses. While our study
only utilizes data from skin, it also more directly focuses on
modeling responses to PAHs and PAH-containing mixtures. We

TABLE 2. Transcription factor analysis

Transcription factor BaP DBC Mix 1 Mix 2 Mix 3

ARNT *** ** *** ****
NRF2 **** **** ****
SP1 **** * **** ****
P53 ****
C-MYC ****

****P< .00001, ***P< .0001, **P< .001, *P< .05.
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believe that the results of this more focused dataset could be
extended to other tissues and exposure routes. Transcriptional
signatures have been used successfully to evaluate responses to
complex and binary mixtures in multiple tissues and in a sum-
mary of comparative gene expression analyses induced by vari-
ous complex PAH-containing mixtures in vitro and in vivo,
several consensus pathways were identified associated with
oxidative stress response, metabolism, and immune response
that overlap with our predicted dataset (Huang, 2013; Sen et al.,
2007). For each functional group, different genes were altered by
the extracts supporting our finding that regulation within these
pathways could be used to discriminate toxicity among com-
plex PAH mixtures. Other studies that have modeled nonaddi-
tive effects of polycyclic aromatic compounds in mixtures on
hepatotoxicity utilizing differential gene expression report the
strong correlation of gene response with other toxicity end-
points in vivo, including histopathology, gross physiology (e.g.
liver weight) and hepatic lipid composition (Kopec et al., 2010,
2011). These studies show the benefits of using gene expression
to evaluate quantitative differences in mixture toxicity com-
pared to individual components.

Use of Bioactivity Profiles for Understanding Toxicity Mechanisms
The bioactivity profiles identified through our classification
approach reflect processes contributing toward PAH chemical
mode of action. Network and transcription factor analysis of the
predictive gene clusters further resulted in identification of the
upstream transcriptional regulators associated with skin can-
cer. Overall, we observed distinct gene expression profiles
linked to tumor outcome for PAHs and PAH mixtures. DBC treat-
ment, which had the greatest tumor response, uniquely altered
genes associated with cell cycle and DNA damage pathways

mediated by p53 and c-Myc; while BaP and PAH mixtures con-
taining coal tar were less carcinogenic and altered genes associ-
ated with metabolic and stress response pathways mediated by
Arnt, Nrf2, and Sp1. The latter response is more typical of meta-
bolic changes and induction in Phase I and II enzymes associ-
ated with exposure to PAHs, such as BaP, as shown in purple in
the integrative network in Figure 5. The magnitude of gene
expression for these enzymes was used, in part, to distinguish
and classify PAHs and PAH mixtures based on carcinogenic
potential, including the noncarcinogenic Mix 1 containing only
the diesel exhaust particulate SRM. However, gene expression
for other unique pathways was prognostic for DBC, which
appears to function through alternate modes of action. The
highly distinct mechanisms regulated by different PAHs short
term after exposure suggests activation of unique stress–
response pathways instead of a common mechanism of action
for all PAHs.

These data help to support a whole mixture approach to risk
assessment over a component-based approach, which requires
chemical characterization of complex mixtures and assumes
common mechanisms of actions for all PAHs. Whole mixture
and comparative potency approaches have been proposed by
the EPA and others (Jarvis et al., 2014; US EPA, 2010) as more
appropriate for complex mixtures when chemical characteriza-
tion is not possible. These approaches are also better suited for
evaluating complex chemical interactions within mixtures
because they do not rely on predicting the effects of interactions
(e.g. additive vs inhibitory) based on knowledge of the individ-
ual components. As we observed in our study in the example of
Mix 3, an additive response cannot be assumed. The addition of
CSC to Mix 3 did not result in elevated tumor response as
expected by RPF calculations. Others have reported similar lack

FIG. 5. Network analysis of pathways predictive of PAH carcinogenic potential during initiation in mouse skin. Gene networks for predictive pathways are visualized

for DBC (green), BaP (blue), and Mix2/3 (red). Transcription factors significantly overconnected (P< .05) by hypergeometric distribution to downstream gene expression

networks were identified for each PAH treatment (Table 1) and are highlighted (circles) in the network figure. In particular, DBC displays unique gene expression and

regulation compared with BaP and the PAH mixtures.
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of additive response with PAH mixtures on tumor outcome and
suggested antagonistic effects on metabolizing enzymes as the
cause (Courter et al., 2008). Instead, whole mixture assessment
using mixture assessment factors (as discussed by Backhaus
and Faust, 2010; Jarvis et al., 2014) compares the effects of whole
mixtures based on a molecular biological endpoint, such as acti-
vation of DNA damage signaling. We propose that instead of
focusing on a single endpoint, the whole mixture approach to
risk assessment could be based on bioactivity profiles of pre-
dicted gene sets. Integration across several biological processes
using a Bayesian approach improves overall classification accu-
racy. This approach could potentially be used to determine the
quantitative relationships between modes of action so that bet-
ter potency factors could be calculated for the purpose of evalu-
ating risk among mixtures from various sources. The EPA
Framework for use of genomics data provides that toxicoge-
nomics data may be useful in a weight-of-evidence approach
for assessing risk (Dix et al., 2006). As such, this pathway-driven
approach was successfully utilized to distinguish early regula-
tory events during initiation linked to tumor outcome and
shows the potential of using short-term initiation studies for
prediction of carcinogenesis by environmental PAH mixtures.
These data provide a ‘source-to-outcome’ model that could be
used to predict PAH interactions during tumorigenesis and pro-
vide mode-of-action based risk assessment of environmental
PAH mixtures.

SUPPLEMENTARY DATA
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