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Quantitative structure-activity relationship (QSAR) models are

widely used for in silico prediction of in vivo toxicity of drug

candidates or environmental chemicals, adding value to candidate

selection in drug development or in a search for less hazardous and

more sustainable alternatives for chemicals in commerce. The

development of traditional QSAR models is enabled by numerical

descriptors representing the inherent chemical properties that can

be easily defined for any number of molecules; however, traditional

QSAR models often have limited predictive power due to the lack

of data and complexity of in vivo endpoints. Although it has been

indeed difficult to obtain experimentally derived toxicity data on

a large number of chemicals in the past, the results of quantitative

in vitro screening of thousands of environmental chemicals in

hundreds of experimental systems are now available and continue

to accumulate. In addition, publicly accessible toxicogenomics data

collected on hundreds of chemicals provide another dimension of

molecular information that is potentially useful for predictive

toxicity modeling. These new characteristics of molecular bio-

activity arising from short-term biological assays, i.e., in vitro

screening and/or in vivo toxicogenomics data can now be exploited

in combination with chemical structural information to generate

hybrid QSAR–like quantitative models to predict human toxicity

and carcinogenicity. Using several case studies, we illustrate the

benefits of a hybrid modeling approach, namely improvements in

the accuracy of models, enhanced interpretation of the most

predictive features, and expanded applicability domain for wider

chemical space coverage.
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Computational toxicology is a rapidly growing field that

combines methodologies from computer science, bio and chem-

informatics, chemistry and molecular biology (reviewed by

Kavlock et al., 2008; Nigsch et al., 2009; Rusyn and Daston,

2010). Due to advances in biological screening technologies,

multiple streams of novel toxicological data, ranging from

short-term in vitro assays to various in vivo endpoints, are

available for hundreds of chemicals (Martin et al., 2009; Shukla

et al., 2010). The Tox21 consortium of the U.S. Environmental

Protection Agency (EPA), National Toxicology Program (NTP),

National Institutes of Health Chemical Genomics Center

(NCGC), and U.S. Food and Drug Administration (FDA) is

generating extensive quantitative in vitro data by screening

hundreds to thousands of environmental chemicals in hundreds

of experimental systems with the goal of re-establishing the field

of predictive chemical toxicology under the paradigm of in vitro-

in vivo extrapolation (Collins et al., 2008). Many chemicals have

been screened for toxicity phenotypes in cells from multiple

individuals (Choy et al., 2008; Lock et al., 2012; O’Shea et al.,
2011). In addition, toxicogenomics data collected for hundreds

of chemicals provide another dimension of experimental

knowledge that is potentially useful for predictive chemical

toxicity modeling (Fielden et al., 2007; Uehara et al., 2011).

Innovative frameworks are required to integrate these rich and

diverse new data for systematic investigation of the

determinants of endpoint toxicity, including underlying

chemical, biological, and genetic factors.

The explosive accumulation of biomolecular screening

data that may help explain and predict toxicity mechanisms

has led to the development of novel computational tools

and databases (Barros and Martin, 2008; Blomme et al.,
2009; Fielden et al., 2007; Waters and Fostel, 2004). The

ultimate goal of computational modeling is fast and accurate

estimation of environmental hazards and human health risks

with minimal to no dependence on animal testing (National

Research Council, 2007).

Cheminformatics approaches, such as quantitative structure-

activity relationship (QSAR) modeling, have been traditionally

used to rationalize biological screening data and employ

resulting models, or predictors, as an initial virtual screen for

efficacy and/or safety of candidate chemicals. The availabil-

ity of predictive multidimensional in vitro and/or in vivo
molecular data on a particular compound greatly facilitates

decision making regarding its potential health hazard and
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mechanisms thereof (Roth et al., 2011). However, new

regulations in Europe and initiatives in the United States

(National Research Council, 2007) are applying pressure on the

scientific and risk assessment communities to develop improved

methods for evaluating thousands of chemicals (Rusyn and

Daston, 2010; Schwarzman and Wilson, 2009).

Adverse outcomes in vivo depend both on the chemical’s

structure and the underlying toxicity mechanisms. In tune with

the proliferation of transdisciplinary computational biology

approaches to unravel chemical toxicity mechanisms, this review

highlights several novel integrative strategies for prediction of

in vivo chemical toxicity by concordant exploitation of both

a chemical’s structure and its short-term biological effects.

Several recent studies demonstrate that statistically significant

and externally predictive hybrid models can be developed.

Hybrid modeling also affords a possibility of mechanistic

interpretation both in terms of underlying chemical features and

mechanisms of toxicity. Herein, we describe a general compu-

tational framework for modeling chemical toxicity using

cheminformatics approaches, summarize recent hybrid modeling

methodologies for in vitro-in vivo extrapolation paradigms, and

comment on the outlook for the future use of these tools in

computational toxicology.

CHEMINFORMATICS-BASED PREDICTORS IN

TOXICOLOGY

Chemical structure–based predictors generally fall into two

types: QSAR and expert systems (Valerio, 2009). QSAR are

statistical models linking molecular structures (represented by

chemical descriptors) to an activity such as an adverse health

outcome (e.g., toxicity). QSAR embodies the principle of

similarity, assuming that structurally similar chemicals may also

have closely aligned activities. For example, chemicals with

� 0.85 similarity (based on the Tanimoto coefficient) to known

actives were 30 times more likely to be confirmed as active than

those picked randomly (Martin et al., 2002). Expert systems, on

the other hand, are models based on rules determined by the

scientific consensus of the experts. For instance, the Ashby-

Tennant structural alerts for carcinogenicity (Ashby and

Tennant, 1994) have been incorporated into many software

tools (Marchant et al., 2008). There are a number of public and

commercial stand-alone or web-based modeling systems that

have been developed for prediction of a large number of toxicity-

relevant endpoints (Tables 1 and 2). Several recent publications

provide an excellent overview of the computational tools

employed in toxicology (Nigsch et al., 2009; Valerio, 2009).

Although QSAR modeling techniques are under continuous

development, most predictors are not considered to be accurate

enough for estimating complex biological phenotypes (Rusyn

and Daston, 2010). Low quality of data, overextrapolation, and

poor definition of the phenotypes to be predicted have been

identified as factors limiting the accuracy of prediction of

absorption, distribution, metabolism, excretion, and toxicity

endpoints by QSAR (Penzotti et al., 2004; Stouch et al., 2003).

In addition, the inherent limitations of QSAR lie in the general

complexity of factors that impact the ultimate adverse health

effect of a chemical, including pharmacokinetics, temporality,

or the fact that multiple mechanisms and interconnected

molecular signaling pathways may lead to the same toxicity

phenotype. Thus, it is not surprising that the performance of

QSAR models is inversely correlated to the complexity of

the modeled endpoints (Hou and Wang, 2008; Penzotti et al.,
2004), higher accuracy being expected for predicting in vitro
results, and lower accuracy observed for more complex

in vivo endpoints, such as carcinogenicity (Benigni and

Bossa, 2008). Given these limitations, it is unlikely that

significant gains in prediction accuracy would be achieved

by implementing alternative machine learning techniques or

developing new chemical descriptors.

EXPLORING OMICS AND IN VITRO DATA FOR

PREDICTIVE TOXICITY MODELING

Alternative methods have been proposed to improve

predictive accuracy and take into account novel data streams

that may help in overcoming some of the inherent limitations

detailed above. Indeed, mechanistic toxicology research has

taken advantage of technology developments in biomedical

sciences. Toxicogenomics, proteomics, and metabolomics

provide experimental approaches for viewing the complete

biological system that is modulated by a chemical (Ekins et al.,
2005). These complex multidimensional data are now routinely

used in drug and chemical safety evaluation, providing

valuable mechanistic understanding of the molecular changes

associated with the disease or treatment (Cui and Paules, 2010).

The utility of these data in predictive toxicology has also been

explored. A number of studies reported on the development of

models that use omics data (most of these used transcriptional

profiling) to predict chronic toxicity phenotypes (e.g., carcino-

genic potential) with acute or subchronic study–derived

information (Fielden et al., 2007; Uehara et al., 2011) or to

classify chemicals with respect to their potential mode of

toxicity (Fielden et al., 2011; Uehara et al., 2010; Waters et al.,
2010).

Recent advances in automated quantitative high-throughput

screening (qHTS) have generated extensive biological data

that can be modeled using statistical or machine learning

techniques (Shukla et al., 2010). The Tox21 program (Collins

et al., 2008), a partnership between EPA, NTP, NCGC, and

FDA, is leading the field in use of a broad spectrum of in vitro
assays, many in qHTS format, to screen thousands of

environmental chemicals for their potential to disturb bi-

ological pathways that may result in human disease (Xia

et al., 2008). Such data on toxicologically relevant in vitro
endpoints can be utilized as hazard-based triggers to inform
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prioritization for additional testing (Reif et al., 2010), to

predict in vivo toxicity (Martin et al., 2010), or to generate

testable hypotheses concerning the underlying mechanisms of

toxicity (Xia et al., 2009).

Statistical models employing biological data such as gene

signatures or qHTS data as independent variables are in principle

similar to QSAR models because both employ similar

computational tools and focus on predicting similar toxicity

phenotypes (Table 3). Importantly, the biological data–based

models have been shown to be both predictive and interpretable

(Coen, 2010; Van Hummelen and Sasaki, 2010; Wetmore and

Merrick, 2004). Still, pure biological data–based predictive

modeling approaches are not intended to explain chemical-

induced factors but focus on the general biological processes

related to toxicity. Furthermore, such models are inherently

insensitive to explicitly defined chemical features of the tested

compounds, and new biological data must be generated in order

to predict the toxicity of novel compounds. In the case of

biology-based approaches, additional factors such as experi-

mental variability, interpretability, and data acquisition costs also

need to be considered.

HYBRID MODELING APPROACHES

To properly realize the joint benefits of bioinformatics-

and cheminformatics-based approaches, several strategies

can be envisioned (Fig. 1). The simplest approach is to

utilize a ‘‘consensus’’ of QSAR and biological models that

were derived independently to predict the same endpoint

(Fig. 1A). Consensus modeling is an approach to developing an

overall prediction by combining multiple classifiers, and it is

widely used in traditional QSAR (reviewed in Dearden, 2003;

Tong et al., 2006). Proponents of the consensus approach

expound that combining multiple models that otherwise

individually encode for different relationships would result in

a more robust prediction (Tong et al., 2006). On the other hand,

opponents question if the marginal predictivity gains are worth

the added complexity of consensus modeling (Hewitt et al.,
2007). Success of consensus prediction depends on the relative

performance, applicability domain, and the number of included

individual models (Penzotti et al., 2004). Although there are no

published examples of consensus between QSAR and biological

data–based models, this approach is likely to yield models of

predictive performance in between that of contributing models

TABLE 1

Examples of Commercial Toxicity Predictors

Prediction tool Categories of endpointsa Features

ADMET Predictor

www.simulations-plus.com

Irritation and adverse health effects QSAR

Carcinogenicity and genotoxicity

Acute and developmental toxicity

Endocrine disruption and ecotoxicity

ACD/Tox Suite

www.acdlabs.com

Irritation and adverse health effects Confidence intervals and probability of

predictionsGenotoxicity

Acute toxicity

Endocrine disruption and ecotoxicity

DEREK, DEREK Nexus

www.lhasalimited.org

Irritation and adverse health effects Expert system

Carcinogenicity and genotoxicity

Developmental toxicity

TOPKAT

www.accelrys.com

Irritation QSAR

Carcinogenicity and genotoxicity

Acute, chronic, and developmental toxicity

Ecotoxicity

CASE

www.multicase.com

Irritation and adverse health effects Fragment-based QSAR

Carcinogenicity and genotoxicity

Acute and developmental toxicity

Endocrine disruption and ecotoxicity

Leadscope Model Applier

www.leadscope.com

Adverse health effects QSAR

Carcinogenicity

Reproductive and developmental toxicity

HazardExpertPro, ToxAlert

www.compudrug.com

Adverse health effects Expert system

Carcinogenicity and genotoxicity

Developmental toxicity

aIrritation—skin, eye, or lung sensitization, allergies; adverse health effects—organ-specific toxicity; ecotoxicity—aquatic toxicity and related environmental

endpoints.
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as a consequence of statistical averaging. For example, in the

simplest instance, predictions from a QSAR model and

a biological model would be averaged into a final consensus

score. Further improvements in consensus prediction may lie in

adjusting relative contributions of the individual models.

There are several examples of how the modeling routine may

use a ‘‘hierarchical’’ approach (Fig. 1B). First, it was suggested

by several groups that a hierarchy of chemical descriptors of

increased complexity may be used to improve a model’s

accuracy. For instance, Basak et al. (2003) developed models

of cytotoxicity of halocarbons by utilizing a hierarchy of

different types of computed descriptors of inherent chemical

properties. In this method, model building begins with

descriptors, which can be computed most easily, and additional

descriptors that may demand more computational resources are

added only if the easily calculable ones do not give satisfactory

results. A similar approach was incorporated into hierarchical

QSAR (HiT QSAR) software (Kuz’min et al., 2008). Both

studies showed that the complexity of chemical descriptors has

an impact on the accuracy of model predictions.

Second, a hierarchy of computational methods was used,

whereby compounds are classified into subgroups with different

levels of response using liner discriminant analysis followed by

recursive partitioning for each subgroup (Manga et al., 2003).

This study developed a model of drug biotransformation using

physicochemical and structural descriptors to predict the percent

of unmetabolized drug excreted after iv dose. The resultant

hierarchical model for biotransformation was a three-level

decision tree that incorporated various classification techniques

and a series of arbitrary cutoffs.

Third, a hierarchical workflow was proposed to explore

chemical structure/in vitro/in vivo relationships (Zhu et al.,
2009). Under this approach, in vitro/in vivo correlation patterns

for all compounds in the modeling set could be ascertained, and

compounds may be clustered into several subsets (e.g., toxic

both in vitro and in vivo; nontoxic in both cases; toxic in vitro
but nontoxic in vivo) based on the discovered relationships. The

modeling set compounds were partitioned into two or more

subclasses, and a classification QSAR model was developed

using chemical descriptors only. Then, subclass-specific QSAR

models were developed. Thus, for any external compound, the

classification model is used first to make assignment to one of

the subclasses, and then a subclass-specific model is used to

make a quantitative prediction of a compound’s toxicity.

An alternative strategy is a ‘‘hybrid’’ approach (Fig. 1C), in

which biology-derived features and chemical structural properties

are pooled into a joint descriptor matrix, which is then used for

modeling. Although, in principle, such joint descriptors may have

limitations (i.e., data quality, cost of data acquisition, etc.), recent

studies suggest that hybrid descriptors do afford improvement to

the accuracy of prediction of in vivo toxicity. Several recent

publications (Low et al., 2011; Sedykh et al., 2011; Zhu et al.,
2008) provide illustrative examples of hybrid modeling.

For example, Zhu et al. (2008) have introduced a concept of

chemical-biological descriptors where conventional chemical

descriptors are augmented by binary qHTS results (‘‘active’’

response is encoded as ‘‘1,’’ ‘‘inactive’’ as ‘‘0’’) from a variety of

assays to create a single combined array of hybrid descriptors.

Using chemical descriptors only, QSAR modeling resulted in

62.3% prediction accuracy for rodent carcinogenicity applied to

the data set of over 300 chemicals for which rodent 2-year cancer

bioassay data were available. Importantly, the prediction accuracy

of the model was significantly improved (to 72.7%) when

chemical descriptors were augmented by qHTS cytotoxicity data

on six rodent and human cell lines, which were regarded as

biological descriptors.

Sedykh et al. (2011) have employed concentration-response

qHTS data reported by Xia et al. (2008) by transforming them

TABLE 2

Examples of Toxicity Predictors in Public Domain

Prediction tool Categories of endpoints Features

T.E.S.T. (EPA)

www.epa.gov/nrmrl/std/cppb/qsar

Carcinogenicity and genotoxicity Consensus and batch prediction modes by QSAR

Acute and developmental toxicity

Ecotoxicity

OncoLogic (EPA)

http://www.epa.gov/oppt/sf/pubs/oncologic.htm

Carcinogenicity Expert system

OpenTox

www.opentox.org

Irritation Expert system (ToxTree); QSAR (Lazar); ontology of

toxic endpointsCarcinogenicity and genotoxicity

OECD QSAR Toolbox

www.qsartoolbox.org

Irritation Prediction by ‘‘read across’’ analysis or by QSAR

Carcinogenicity and genotoxicity

Ecotoxicity

OCHEM

www.ochem.eu

Genotoxicity Online chemical database and QSAR modeling

environmentEcotoxicity

ChemBench

chembench.mml.unc.edu

Genotoxicity Web-based platform for QSAR modeling or prediction

Ecotoxicity
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into quantitative biological descriptors of chemicals. The in vitro
data, especially concentration-response qHTS profiles, were

shown to improve the results of QSAR modeling of in vivo end

points (i.e., rat LD50) as compared with conventional QSAR

models that used only chemical structure descriptors. Further-

more, the biological qHTS descriptors data also enhanced the

model’s coverage (i.e., the number of compounds within the

applicability domain of the model), which is essential for

applying models to large and diverse chemical libraries of

environmental concern.

Toxicogenomic data provide another example of high-

dimensional biological information that may be used for hybrid

modeling. A comparative analysis of QSAR- and toxicogenom-

ics data–based models was recently reported (Liu et al., 2011).

The authors used gene expression profiles of liver tissue

obtained from rats treated with 62 chemicals at different time

points (1, 3, and 5 days) to predict rat liver carcinogenicity and

concluded that the toxicogenomics data–based models out-

performed QSAR. Low et al. (2011) reported a similar outcome

when gene expression data–based models (24-h rat liver

toxicogenomics profiles of 127 compounds) were compared

with conventional QSAR in modeling 28-day hepatotoxicity in

the rat. However, the latter study also attempted to combine

toxicogenomics data and chemical descriptors for a hybrid

approach. Although hybrid models did not afford prediction

accuracy higher than that of toxicogenomics data–based models,

they identified both chemical features and transcripts predictive

of the phenotype, which provided additional insight regarding

the mechanistic basis of subchronic liver injury.

CONCLUSIONS AND FUTURE DIRECTIONS

Accurate and high-throughput predictive methods are

needed to support efficient decision making regarding the

efficacy and/or safety of candidate compounds and in tiered

screening and assessment schemes. Chemical structure–based

TABLE 3

Examples of Toxicity Data–Based Predictive Models

Predicted endpoints Input variables Publication

Reproductive toxicity 500 in vitro assays on 256 compounds from ToxCast Phase I Martin et al., 2011

Hepatotoxicity Liver gene expression from rats, rat hepatocytes, and human

hepatocytes treated with two compounds for 24 h

Roth et al., 2011

Hepatobiliary injury Blood gene expression and urine metabolomics of rats treated with

16 compounds for 1, 3, 14 days

Ellinger-Ziegelbauer et al., 2011

Hepatotoxicity Liver and blood gene expression of rats treated with eight

compounds at three doses over 6, 24, and 48 h

Huang et al., 2010

Acetaminophen-, phenobarbital- and

methapyrilene-induced hepatotoxicity

Gene expression, proteomics, and metabolomics of mice treated for

short period of time

Coen et al., 2004; Craig et al., 2006;

Waterman et al., 2010

Hepatotoxicity mechanisms Liver gene expression of rats treated with 150 compounds at three

doses from 1 to 28 days

Open TG-GATEs database

(Uehara et al., 2008)

Hepatotoxicity Liver gene expression of rats (rat hepatocytes) treated with 111 (86)

compounds for 24 h

ToxExpress database (Barros and

Martin, 2008)

Hepatotoxicity, hepatotumorigenesis,

nephrotoxicity, etc.

Liver and kidney gene expression of rats treated with 344

compounds for 1–7 days

Iconix database (Blomme et al., 2009;

Fielden et al., 2007; Wang et al., 2008)

Hepatotoxicity Liver gene expression of rats treated with 15 compounds for 6, 24,

and 72 h

Zidek et al., 2007

Nongenotoxic carcinogenicity Liver gene expression of rats treated with 52 compounds for 24 h Nie et al., 2006

Hepatocarcinogenicity Liver gene expression of rats treated with seven congeneric

compounds for 1–28 days

Nakayama et al., 2006

Valproic acid–induced hepatotoxicity Liver gene expression and proteomics and urine metabolomics of

rats treated for 6, 12, and 24 h

Schnackenberg et al., 2006

Toxicity related to pancreas, liver,

kidney, testes, and bladder

Blood and urine metabolomics of rats treated with 147 compounds

for 1–8 days

COMET database (Lindon et al., 2005)

Bromobenzene-induced hepatotoxicity Gene expression and proteomics of rats treated for 6 and 24 h Heijne et al., 2004

Mechanisms of hepatotoxicity Gene expression of rat primary hepatocytes treated with 15

compounds for 24 h

Waring et al., 2001
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predictive methods have been widely applied in the screening

and ranking of thousands of chemicals for bioactivity and

have demonstrated the promise of in silico approaches for

achieving these goals. However, predictive methods based on

chemical structure alone have limitations, especially for

accurately projecting complex in vivo outcomes. Integration

of chemical features and biological screening and/or

toxicogenomic data provides important advantages (i.e.,

improved prediction accuracy, greater chemical space

coverage, and interpretability of predictive features) over

traditional cheminformatic methods such as QSAR modeling.

As shown in Figure 1, novel strategies for integrating

chemical structural information with bioactivity data include

consensus (Tong et al., 2006), hybrid (Sedykh et al., 2011;

Zhu et al., 2008), and hierarchical approaches (Zhu et al.,
2009).

Data limitations are currently the major obstacle to

advancing these transdisciplinary integration approaches. In

particular, the database of toxicity studies is limited to a small

number of chemicals. These chemicals are both too few in

number and too limited in structural diversity for reliable

QSAR analysis. At present, there are only several sufficiently

large omics data sets (e.g., Open Toxicogenomics Project

Genomics Assisted Toxicity Evaluation System [http://toxico.

nibio.go.jp/], Chemical Effects in Biological Systems Database

[http://www.niehs.nih.gov/research/resources/databases/cebs/],

ToxExpress [http://www.genelogic.com/knowledge-suites/

toxexpress-program]) with hundreds of compounds of largely

disparate chemotypes selected for phenotypic diversity. As such,

most omics data sets are poorly suited for machine learning by

QSAR. This deficit supports the more general and recognized

need for hazard characterization of a greater number of more

varied chemicals, including a larger proportion of the tens of

thousands of yet untested chemicals in commerce and the

environment. Other outstanding data needs concern the classifi-

cation of chemicals according to a wider array of hazard traits and

susceptibility factors (Guyton et al., 2009). There are ongoing

efforts to address these significant data limitations by character-

izing multiple in vitro and in vivo toxicological phenotypes

(Martin et al., 2009; Padilla et al., 2012; Shukla et al., 2010),

including in cells from genetically diverse individuals (Choy

et al., 2008; Lock et al., 2012; O’Shea et al., 2011). The large-

scale screening efforts of Tox21 (Huang et al., 2011) and other

public-private partnerships (Cavero, 2011) hold particular promise

for vastly expanding the database of chemicals and endpoints for

which experimental data are available.

Additional types of hybrid/hierarchical modeling approaches

can be envisioned to address the dependency of hybrid

approaches on the availability of experimental data, a current

limitation for the wide use of these models in predictive

FIG. 1. Strategies for utilizing biological and chemical data in predictive modeling of in vivo toxicity.
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toxicology. In principle, QSAR models could be developed

to predict the results of short-term toxicity assays (once enough

data for a sufficiently large chemical library is available)

because this task is inherently less challenging than modeling

complex in vivo endpoints. This represents an intriguing

possibility of applying QSAR methods to build predictive

models of each of many individual molecular endpoints from

which the resulting ‘‘predicted in vitro’’ data can then be used

as inputs into models of in vivo toxicity (Martin et al., 2011;

Sipes et al., 2011). The application of this strategy could

potentially enable a predictive modeling workflow that does

not require new experimental data and employs only compound

descriptors that can be computed from chemical structure.

Future computational methods should aim to optimize the

use of both chemical- and biological-based data domains to

achieve the most accurate predictions possible, because each

one individually provides limited and complementary insights

regarding toxicity. To this end, studies can be designed with

both approaches in mind, so as to provide sufficient diversity

from both chemical and biological data domains. The goal

should be to generate data matrices with broad and dense

coverage of chemical structure and bioactivities for hybrid data

analysis, i.e., combining chemical and biological data for

machine learning. Additional improvements can be achieved

by using mechanistically relevant short-term toxicity assays.

The resulting integrative approaches have the potential to

become a powerful tool for elucidating both relevant bio-

logical interactions and structural motifs that together better

represent the underlying complex mechanisms by which toxic

effects of chemicals develop. Systematic investigation of

genetic and other determinants of chemical toxicity can

also be envisioned. These approaches can, in turn, support

applications in the design of new products and chemical

processes as well as in the evaluation of in-use chemicals and

environmental contaminants, based on comprehensive and

integrative characterization by both chemical structural features

and the results of multiple and diverse short-term biological

assays and/or omics studies.
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